Андрей Смирнов
Время чтения: ~21 мин.
Просмотров: 0

Камера сгорания

Период задержки воспламенения

За этот период в камеру сгорания поступает незначительная часть впрыскиваемого за цикл топлива. На индикаторной диаграмме в течение этого периода не наблюдается заметных изменений в протекании линии сжатия: давление в цилиндре продолжает увеличиваться так, как будто топливо не поступает в него. При увеличении Qi в камере сгорания к моменту воспламенения накапливается много топлива. Это повышает жесткость работы дизеля. Продолжительность периода задержки воспламенения зависит от следующих основных факторов: качества топлива, угла опережения впрыска топлива, давления и температуры сжатого воздуха в момент начала впрыска топлива, давления начала впрыска, нагрузки на дизель и частоты вращения коленчатого вала.

Рассмотрим влияние каждого фактора на величину Qi.

Химический состав дизельного топлива сильно влияет на продолжительность Qi. Лучшими дизельными топливами являются топлива парафинового ряда, обладающие более высоким цетановым числом и обеспечивающие наименьшую продолжительность Qi и мягкую работу дизеля.

Для каждой конструкции дизеля принят свой угол опережения впрыска топлива фвп. Оптимальное его значение зависит от нагрузки, теплового режима, частоты вращения коленчатого вала, давления и температуры воздуха. При увеличении фвп топливо, впрыскиваемое в камеру сгорания, попадает в холодную среду с низким давлением, т. е. меньшей объемной концентрацией кислорода. Воспламенение топлива вследствие этого задерживается. В цилиндре накапливается топливо, которое сгорает до прихода поршня в в.м.т. Это вызывает повышение жесткости работы дизеля и давления Pz. При малой величине фвп топливо сгорает не полностью, ббльшая его часть сгорает в процессе расширения (в третьей фазе), увеличивается теплоотдача в стенки цилиндров, мощность дизеля снижается.

Увеличение давления и температуры сжатого воздуха в момент начала впрыска способствуют более раннему самовоспламенению топлива, сокращению периода задержки воспламенения, более мягкой работе двигателя.

Увеличение давления начала впрыска приводит к дополнительному запаздыванию начала впрыска, сокращается продолжительность впрыска. При уменьшении давления начала впрыска ухудшается качество распыливания топлива и смесеобразования, что приводит к ухудшению рабочего процесса.

Увеличение нагрузки сопровождается большей подачей топлива за цикл, улучшаются условия подготовки рабочей смеси к сгоранию. Следовательно, продолжительность Qi с увеличением нагрузки сокращается.

Частота вращения коленчатого вала n влияет следующим образом на величину Qi. При изменении n изменяются фвп, давление и продолжительность впрыска топлива, качество его распыливания. Давление и температура воздуха в камере сжатия к моменту начала впрыска также изменяются. На быстроходных дизелях, предназначенных для работы с часто меняющимися скоростными режимами, устанавливают устройства, обеспечивающие автоматическое изменение величины фвп при изменении n.

Из сказанного видно, что момент начала впрыска и период задержки воспламенения оказывают большое влияние на процесс сгорания, на мощность и экономичность дизелей. Поэтому при их эксплуатации эти показатели надо поддерживать в заданных пределах.

Средняя скорость нарастания давления на участке 2…3 определяет жесткость работы дизеля. Ее считают нежесткой, если средняя скорость нарастания давления дельта_Р/дельта_ф не превышает 0,5 МПа на 1° угла поворота коленчатого вала.

Чем больше поступает топлива в цилиндр в течение периода Qi задержки воспламенения, тем жестче работа двигателя и тем большей величины достигает максимальное давление сгорания Рz.

Характер поступления топлива определяется профилем кулачка, диаметром и величиной хода плунжера топливного насоса, конструкцией дизеля и качеством топлива. Так, например, применение бензина вместо дизельного топлива вызывает появление ударных волн и вибрацию давления в цилиндре дизеля.

Неразделенные камеры сгорания

Неразделенные камеры сгорания представляют собой единый объем и имеют обычно простую форму, которая, как правило, согласуется с направлением, размерами и числом топливных факелов при впрыске. Эти камеры компактны, имеют относительно малую поверхность охлаждения, благодаря чему снижаются потери теплоты. Двигатели с такими камерами сгорания имеют приличные экономические показатели и хорошие пусковые качества.

Неразделенные камеры сгорания отличаются большим разнообразием форм. Чаще всего они выполняются в днище поршней, иногда частично в днище поршня и частично в головке блока цилиндров, реже — в головке.

На рисунке показаны некоторые конструкции камер сгорания неразделенного типа.

В камерах сгорания, приведенных на рисунке, а—д качество смесеобразования достигается исключительно путем распыления топлива и согласования формы камер с формой факелов впрыска топлива. В этих камерах чаше всего применяются форсунки с многодырчатыми распылителями и используются высокие давления впрыска. Такие камеры имеют минимальные поверхности охлаждения. Для них характерна низкая степень сжатия.

Камеры сгорания, показанные на рис. е—з, имеют более развитую теплопередаюшую поверхность, что несколько ухудшает пусковые свойства двигателя. Однако путем вытеснения воздуха из надпоршневого пространства в объем камеры в процессе сжатия удается создать интенсивные вихревые потоки заряда, которые способствуют хорошему перемешиванию топлива с воздухом. При этом обеспечивается высокое качество смесеобразования.

Камеры сгорания, показанные на рисунке, к—м, находят применение в многотопливных двигателях. Для них характерно наличие строго направленных потоков заряда, обеспечивающих испарение топлива и его введение в зону сгорания в определенной последовательности. Для улучшения рабочего процесса в цилиндрической камере сгорания в головке под выпускным клапаном (рис. м) используется высокая температура выпускного клапана, который является одной из стенок камеры.

Текст

О П И С А Н И Е 393640ИЗОЬЕЕТ ЕНИЯХ АВТОРСХОМУ СВИДЕТЕЛЬСТВУ Союз СоветскихСоциалистическихРеспублик Зависимое от авт, свидетельстваено 07.Х.1970 ( 1483418/24-6 л, Г 23 г 1/06 г 02 с 7/18 ки-динением з с при Приоритет -Опубликовано 10.7111,1973, Бюллетень31 осударственныи комитетСовета Министров СССРео делам изооретенийи открытий К 621.438,056(088,8 описания 27.Х 11.1973 иковани та Авторыизобрете О, А. Рудаков, М. А. Савельев и Э. М. Лебе Заявитель ЖАРОВАЯ ТРУБА КАМЕРЫ СГОРАНИЯ Предм зобретения Изобретение относится к газотурбинным двигателям, в частности к камерам сгорания газотурбинных двигателей,Известны жаровые трубы камер сгорания, например, газотурбинного двигателя, выполненные из обечаек, снабженных на концах термокомпенсационными прорезями и отделенных одна от другой гофрированными проставками, которые образуют с обечайками охлаждающие каналы.Предлагаемая жаровая труба отличается от известных тем, что. прорези выполнены с отбортовками, образующими в поперечном сечении криволинейный треугольник, обращенный основанием в сторону каналов,Это повышает эффективность охлаждения обечаек и уменьшает их коробление.На фиг. 1 изображена предлагаемая жаровая труба камеры сгорания; на фиг. 2 — разрез по А — А на фиг. 1.Жаровая труба 1 камеры сгорания образована кольцевыми обечайками 2 и 3, разделенными гофрированными проставками 4, ооразующими с обечайками щелевые охлаждающие каналы Б, На конпах обечаек выполнены термокомпенсационные прорези, кромки Б которых отбортованы и образуют в поперечном сечении криволинейный треугольник б, обращенный основанием к каналам Б,Охлаждающий воздух, протекающий по каналам образует сплошную защитную пелену на внутренней поверхности обечайки 2, предохраняя ее от прогорания. Отбортованные кромки 5, деформируясь при нагреве обечаек, предохраняют последние от коробления. Жаровая труба камеры сгорания, например, 15 газотурбинного двигателя, выполненная изобечаек с термокомпенсационными прорезями на концах, соединенных через гофрированные проставки, которые образуют с обечайками охлаждающие каналы; отличающаяся тем, что, 20 с целью повышения эффективности охлаждения и уменьшения коробления обечаек, прорези выполнены с отбортовками, образующими в поперечном сечении криволинейный треугольник, обращенный основанием в сторону кана.25 лов.С. Титова ова орректор дписн Типография, пр, Сапунова,Заказ 3444/13 11 зд,910 ЦНИИПИ Государственного комитета по делам изобретений Москва, Ж, Раушска

Смотреть

Отличие жаротрубного котла от водотрубного

Теплогенерирующие котлы большой производительности по своей конструкции разделяются на жаротрубные и водотрубные. Особенность жаротрубных в том, что поверхность нагрева состоит из трубок, по которым движется сгораемое топливо. А нагрев теплоносителя, находящегося за пределами трубок, происходит путём теплообмена. Жаротрубные котлы делятся также на пролётные – газы проходят без поворотов и оборотные – газы поворачивают в камере при движении. Чаще всего это оборудование изготавливается в виде горизонтального цилиндра. Водогрейные котлы, такие как КВР или КВА, содержат нагретую воду внутри. Поверхность нагрева располагается в центре котла или ниже.

Трехходовой жаротрубный котел

С одного торца устанавливается горелка для сжигания газа или дизельного топлива. Выше нагревательных элементов располагаются дымогарный трубопровод, по которому продукты горения направляются в дымоход. По количеству контуров установки разделяются на двухходовые и трёхходовые. В первых действует реверсивная камера сгорания, где газы упираются в заднюю поверхность агрегата, затем разворачиваются и идут к фронтальной, после отражения от которой газы меняют направление в сторону удаления из котла. В трёхходовой схеме газы при возвращении в передней поверхности проходят ещё одну жаровую трубу или же через ряд дымогарных труб. После чего, отразившись, газы идут на удаление из агрегата.

Главные преимущества жаротрубных котлов:

  • простая конструкция;
  • изготавливаются из недорогого метала;
  • компактность;
  • простое обслуживание;
  • легкий тепловой расчет

Недостатки при эксплуатации жаротрубных котлов:

  • требования по качеству подпиточной воды. Это связано с небольшими скоростями циркуляции. Поэтому это оборудование запрещается подключать к системам отопления из-за высокого шламообразования в радиаторах;
  • высокая взрывоопасность. Если в котле имеется большое количество горячей воды и внезапно падает давление из конструктивных поломок, то мгновенно происходит выделение пара, сопровождающееся взрывом;
  • высокое аэродинамическое сопротивление;
  • необходимость поддержания температуры большого объёма воды даже в случае отсутствия потребности, иначе при остывании приходится затрачивать много времени на нагрев.

Противоположным принципом работы обладает водотрубный котёл, его элемент нагрева представляет собой ряд труб, по которым движется нагретая вода, а теплообмен происходит путём нагрева труб путём сжигания топлива. Наиболее распространённым и простым видом теплообменника является узел, состоящий из двух труб, сваренных между собой несколькими поперечными трубами.

Преимущества водотрубных котлов следующие:

  • нет опасности взрыва;
  • быстрый теплообмен;
  • небольшой вес оборудования;
  • надёжная конструкция;
  • нет особенных требований к качеству воды.

Минусы такого оборудования:

  • качество швов и соединений должно быть высоким;
  • более сложное устройство;
  • сложное техобслуживание.

На российском рынке больше всего представлено жаротрубное оборудование. Это следствие более простой технологии и несложного обслуживания. Однако благодаря своим преимуществам, часть рынка всё же принадлежит водотрубным котлам, несмотря на низкую популярность.

Слоевая топка

Слоевая топка

Основная статья: Слоевая топка

Топки, в которых производится слоевое сжигание кускового твердого топлива, называются слоевыми. Эта топка состоит из колосниковой решетки, поддерживающей слой кускового топлива, и топочного пространства, в котором сгорают горючие летучие вещества. Каждая топка предназначена для сжигания определенного вида топлива. Конструкции топок разнообразны, и каждая из них соответствует определенному способу сжигания. От размеров и конструкции топки зависят производительность и экономичность котельной установки.

Слоевые топки по характеру организации слоя топлива на решетке разделяются на три класса:

  • С неподвижной колосниковой решеткой и неподвижно лежащим на ней слоем топлива;
  • С неподвижной колосниковой решеткой и перемещающимся по ней слоем топлива;
  • С движущейся колосниковой решеткой, перемещающей лежащий на ней слой топлива (перемещение слоя топлива вместе с колосниковой решеткой).

В зависимости от степени механизации подачи топлива и удаления шлака слоевые топки разделяются на:

  • топки с ручным обслуживанием (ручные топки);
  • полумеханические;
  • полностью механизированные;

Предупреждение об использовании файлов cookies на сайте Info KS

В соответствии с законами ЕС, поставщики цифрового контента обязаны предоставлять пользователям своих сайтов информацию о правилах в отношении файлов cookie и других данных. Администрация сайта должна получить согласие конечных пользователей из ЕС на хранение и доступ к файлам cookie и другой информации, а также на сбор, хранение и применение данных при использовании продуктов Google.

Файл cookie – файл, состоящий из цифр и букв. Он хранится на устройстве, с которого Вы посещаете сайт Info KS. Файлы cookie необходимы для обеспечения работоспособности сайтов, увеличения скорости загрузки, получения необходимой аналитической информации.

Сайт использует следующие cookie:

Необходимые для работы сайта: навигация, скачивание файлов. Происходит отличие человека от робота.

Файлы cookie для увеличения быстродействия и сбора аналитической информации. Они помогают администрации сайта понять взаимодействие посетителей сайтом, дают информацию о страницах, которые были посещены. Эта информация помогает улучшать работу сайта.

Рекламные cookie. В эти файлы предоставляют сведения о посещении наших страниц, данные о ссылках и рекламных блоках, которые Вас заинтересовали. Цель — отражать на страницах контент, наиболее ориентированный на Вас.

Если Вы не согласны с использованием нами файлов cookie Вашего устройства, пожалуйста покиньте сайт.

Продолжением просмотра сайта Info KS Вы даёте своё согласие на использование файлов cookie.

Факторы влияющие на развитие четвертой фазы горения

  1. Турбулентное движение заряда, которое улучшает контакт топлива и воздуха и, следовательно, улучшает догорание.
  2. Качество распыления в конце подачи топлива. Чем больше диаметр капель, тем продолжительнее процесс догорания Нечеткость отсечки топлива в конце впрыска, как и продолжительное снижение давления в конце впрыска не только снижают тепловыделение, но и вызывают закоксовывание сопел форсунок.
  3. Попадание топлива на холодные стенки внутри цилиндрового пространства приводит к увеличению времени догорания, поэтому увеличение нагрузки дизеля до его прогрева нежелательно.
  4. Наддув. Используя наддув, увеличивают количество подаваемого топлива, в том числе и путем затяжного впрыска, что приводит к увеличению времени догорания.

Кольцевая камера — сгорание

Типы камер сгорания. а — многотрубчатая ( секционная. б — кольцевая. в — трубчато-кольцевая.

Кольцевые камеры сгорания ( рис. 7.17, б) характеризуются единым огневым пространством. По сравнению с многотрубчатой кольцевая камера более проста, имеет меньшие габариты и меньшее гидравлическое сопротивление, создает более равномерное температурное поле.

Кольцевая камера сгорания размещена между радиальным диффузором компрессора и обоймой турбины высокого давления в общем корпусе турбоагрегата. Она дискового типа, состоит из двух полукольцевых частей с горизонтальным разъемом. Горелки присоединены к кольцевому трубчатому коллектору изогнутыми трубками со штуцерными разъемами. Коллектор топливного газа выполнен разъемным и оснащен одним газопроводящим патрубком и двадцатью отводами с установленными в них дроссельными шайбами диаметром 7 мм.

Кольцевые камеры сгорания имеют несколько пламенных труб, обычно от 4 до 16, которые располагаются вокруг турбокомпрес-сорной группы. Все пламенные трубы могут быть заключены в общий цилиндрический корпус, или каждая пламенная труба может иметь отдельный корпус. Такие камеры сгорания применяются в установках без регенераторов.

Схема работы опорного подшипника газотурбинной установки типа GT-35 фирмы СТАЛ.| Пусковое устройство газотурбинной установки типа GT-35 фирмы СТАЛ.

Кольцевая камера сгорания состоит из двух цилиндров, сделанных из листовой стали, между которыми помещено семь пламенных труб из нержавеющей стали, обмурованных клинкером.

Кольцевая камера сгорания обеспечивает эффективный рабочий процесс, в результате которого двигатель имеет малый уровень дымления.

Схема ТРД с центробежным компрессором ( ЦБК и трубчатой камерой сгорания.

Кольцевые камеры сгорания отличаются от камер сгорания других типов меньшим количеством деталей и своей компактностью.

Применена кольцевая камера сгорания, что потребовало соответствующего изменения корпуса турбогруппы. Система охлаждения масла — воздушная. Все элементы маслоснабжения ( кроме маслоохладителей) и регулирования размещены на турбоблоке. Маслосистемы ГТУ и нагнетателя объединены.

Зажигание газовоздушной смеси в кольцевой камере сгорания осуществляют электрозапальными свечами типа СД-5-АНМ-Т, установленными в двух пусковых горелках. Свечи с помощью высоковольтных кабелей подсоединены к пусковым катушкам зажигания КР-1, размещенным на раме-маслобаке.

Схемы пневматических форсунок.

Дисковые форсунки в основном используют в кольцевых камерах сгорания газотурбинных установок, где необходимо подавать топливо по кругу. Чашечные форсунки нашли применение в топках паровых котлов. В открытых форсунках топливо выходит Из распылителя по всей окружности чаши или диска, а в закрытых форсунках топливо поступает в зону горения через систему небольших отверстий. Одноконтурные форсунки имеют один распылитель, а многоконтурные — систему концентрично расположенных распылителей.

Зависимость выделения загрязняющих веществ ( индекса эмиссии от частоты вращения ротора авиационного ГТД.

Примером типичной камеры сгорания современного двигателя является кольцевая камера сгорания ДТРД RB.

Дожигатели

Дожигатель (или подогревают) является дополнительным компонентом, добавленным к некоторым реактивным двигателям, прежде всего те на военном сверхзвуковом самолете. Его цель состоит в том, чтобы обеспечить временное увеличение толчка, и для сверхзвукового полета и для взлета (поскольку высокое крыло, загружающее типичный для проектов сверхзвукового самолета, означает, что скорость взлета очень высока). На военных самолетах дополнительный толчок также полезен для боевых ситуаций. Это достигнуто, введя дополнительное топливо в брандспойт вниз по течению (т.е. после) турбина и воспламенившись он. Преимущество дожигания топлива значительно увеличено толчок; недостаток — свой очень высокий расход топлива и неэффективность, хотя это часто расценивается как приемлемое в течение коротких периодов, во время которых это обычно используется.

Реактивные двигатели упоминаются как работа влажным, когда дожигание топлива используется и сухо, когда двигатель используется без дожигания топлива. Двигатель, производящий максимум, толкал влажный, в максимальной мощности, или макс. подогрейте (это — максимальная мощность, которую двигатель может произвести); двигатель, производящий максимальный сухой толчок, в военной власти, или макс. высохните.

Как с главной камерой сгорания в газовой турбине, у дожигателя есть и случай и лайнер, служа той же самой цели как их главные коллеги камеры сгорания. Одно существенное различие между главной камерой сгорания и дожигателем — то, что повышение температуры не ограничено турбинной секцией, поэтому дожигатели имеют тенденцию иметь намного более высокое повышение температуры, чем главные камеры сгорания. Другое различие — то, что дожигатели не разработаны, чтобы смешать топливо, а также основные камеры сгорания, таким образом, не все топливо сожжено в разделе дожигателя. Дожигатели также часто требуют, чтобы использование flameholders держало скорость воздуха в дожигателе от сдувания пламени. Это часто плохо обтекаемые тела, или «vee-льется» непосредственно позади топливных инжекторов, которые создают локализованный поток низкой скорости таким же образом, купол делает в главной камере сгорания.

Преждевременное воспламенение рабочей смеси

В процессе работы двигателя иногда возникают такие условия, при которых отдельные детали внутри камеры сгорания (электроды свечи зажигания, клапаны) нагреваются выше 700…800°С. Соприкасаясь с нагретыми деталями, рабочая смесь воспламеняется раньше, чем возникает искра зажигания. Сгорание начинается до прихода поршня в в.м.т. Происходит так называемое калильное зажигание. Детали при калильном зажигании нагреваются еще больше. Воспламенение смеси при последующих циклах начинается еще раньше. В результате детали настолько перегреваются, что начинают оплавляться, увеличивается сопротивление их движению, и двигатель теряет мощность. Одной из причин возникновения калильного зажигания является применение свечей зажигания, не соответствующих конструкции двигателя.

Особенности закрытой камеры сгорания

Закрытая камера сгорания представляет собой замкнутую зону с горелкой, куда по коаксиальному дымоходу, который является трубой в трубе, нагнетается воздух и происходит удаление продуктов сгорания. Принудительная циркуляция воздуха обеспечивается за счёт использования электрического вентилятора, что делает отопительную систему зависимой от наличия электроэнергии, а также повышает уровень шума в помещении.

Нагнетаемый воздух согревается отработанными газами, что способствует полному сгоранию топлива. Это, в свою очередь, повышает КПД котлов с закрытой камерой и улучшает их экологическую безопасность. Котлы с закрытой камерой отличаются несложным монтажом, им не требуются громоздкие дымоходы, и они прекрасно подходят для организации автономного отопления в квартирах.

Из недостатков можно назвать регулярное техническое обслуживание, значительный расход электроэнергии и опасность промерзания области сгорания топлива из-за малой длины коаксиального дымохода. Экономия топлива, которую дают котлы с закрытой камерой, как правило, перекрывается расходами на электроэнергию, техническое обслуживание и приобретение запчастей, необходимых в случае ремонта.

Детонация

В двигателях с искровым зажиганием при определенных условиях работы двигателя возникает быстрый, приближающийся к взрыву процесс сгорания рабочей смеси. Называется он детонацией. Признаки, указывающие на детонацию при работе двигателя: звонкие металлические стуки в цилиндрах, перегрев двигателя, снижение мощности, появление черного дыма (сажи) в отработавших газах.

Основные причины появления детонации:

  • применение топлива, октановое число которого ниже рекомендованного для данного двигателя;
  • повышение степени сжатия, вызванное низким качеством ремонта или обслуживания;
  • увеличение угла опережения зажигания; качество рабочей смеси не соответствует требованиям, которые предъявляются к топливу для данного двигателя. Наиболее склонна к детонации рабочая смесь при а = 0,9.

На появление детонации также влияет материал головки цилиндров и поршней. Двигатели, у которых эти детали изготовлены из алюминиевых сплавов, меньше склонны к детонации, чем двигатели, у которых эти детали изготовлены из чугуна. Так как чугун обладает худшей теплоотдачей, то в жаркую погоду детали перегреваются, и это приводит к детонации.

Детонация повышает давление и температуру в цилиндрах, вызывает вибрацию двигателя. Вследствие этого ухудшается смазка трущихся поверхностей, обгорают клапаны, поршни, разрушаются подшипники коленчатого вала.

Требования к камере сгорания ГТД

Камера сгорания — один из самых сложных элементов конструкции двигателя. В настоящее время она должна удовлетворять следующим десяти требованиям:

Высокое значение коэффициента полноты сгорания η, равного отношению энергии, выделяющейся при сжигании 1 кг топлива к теплотворной способности топлива. Типичные значения η — 0,98..0,99.
Малые потери полного давления δ=p1∗−p2∗p1∗⋅100%{\displaystyle \delta ={\frac {p_{1}^{*}-p_{2}^{*}}{p_{1}^{*}}}\cdot 100\%}, так как это ведет к уменьшению тяги. Типичные значения δ: 3% (противоточные камеры), 6 % (прямоточные), 8 % (двухконтурные двигатели).
Малые габариты камеры для облегчения веса

При этом длина камеры обычно в 2—3 раза больше высоты.
Обеспечение широкого диапазона изменения параметров (расхода воздуха, топлива) — обеспечение возможности работать на разных режимах: 2≤α=GairLGfuel≤50{\displaystyle 2\leq \alpha ={\frac {G_{air}}{L_{0}G_{fuel}}}\leq 50}, где L — стехиометрический коэффициент (количество воздуха, необходимого для сжигания 1 кг топлива, принимается ≈0,1488).
Обеспечение заданной эпюры распределения температуры в выходном сечении камеры при минимальной неравномерности этой температуры в окружном направлении (при большой степени неравномерности может сгореть сопловой аппарат).
Надёжный запуск камеры при температурах до −60 °С, в том числе полётный запуск на высоте 7 км.
Малая дымность отработанных газов (для визуальной незаметности).
Концентрация токсических веществ в выхлопных газах на срезе сопла не должна превышать нормы ИКАО — более важное требование. Наиболее существенные концентрации у веществ CO, CnHm, NOx.
Отсутствие вибрационного горения (автоколебаний).
Определённый срок службы (минимально 4000 часов до ремонта, 20 000 часов всего — это порядка 2 лет).

Камеры сгорания ДВС


Камеры сгорания в поршне дизельного двигателя (варианты)

В течение короткого цикла двигателя должно происходить не только сгорание, но и предварительное приготовление горючей смеси (за исключением устаревших карбюраторных моторов). Поэтому форма камеры сгорания, размещение форсунки и клапанов/окон должно обеспечивать как приготовление смеси, так и её сгорание с минимальными теплопотерями в стенки

Кроме того, важно соблюдение экологических норм.

В искровых моторах камера сгорания может быть шатрового, полусферического, линзовидного, клинового, и более редких типов. Движение фронта пламени должно обеспечивать примерно одинаковую скорость сгорания, чтобы работа двигателя не была «жёсткой». Из соображений детонационной стойкости путь пламени должен быть кратчайшим, а последняя порция смеси не должна располагаться в зоне выпускных клапанов. В системах с расслоением заряда повышение детонационной стойкости достигают обеднением последней сгорающей порции смеси.Камера должна быть компактной, чтобы уменьшить теплоотдачу в стенки. Подача топлива — через карбюратор, в коллектор, прямой впрыск в цилиндр.

В моторах с воспламенением от сжатия форма камер более разнообразна, определяется выбранным методом смесеобразования (испарения топлива). Это может быть вихрекамера или предкамера в головке блока, либо камера в поршне. Смесеобразование — плёночное, объёмно-плёночное, объёмное. Метод впрыска — только прямой. В последнее время эффективная система Common rail значительно улучшило показатели двигателей с объёмным смесеобразованием, так что разнообразие камер сократилось.

Теплообмен в топке

В топке одновременно происходят горение топлива и сложный радиационный и конвективный теплообмен между заполняющей ее средой и поверхностями нагрева.

Источниками излучения в топках при слоевом сжигании топлива являются поверхность раскаленного слоя топлива, пламя горения летучих веществ, выделившихся из топлива, и трехатомные продукты сгорания С02, S02 и Н2О.

При факельном сжигании пыли твердого топлива и мазута источниками излучения являются центры пламени, образующиеся вблизи поверхности частиц топлива от горения летучих, распределенных в факеле, раскаленные частицы кокса и золы, а также трехатомные продукты сгорания.
При горении в факеле распыленного жидкого топлива излучение частиц топлива незначительно.

При сжигании газа источниками излучения являются объем его горящего факела и трехатомные продукты сгорания. При этом интенсивность излучения факела зависит от состава газа и условий протекания процесса горения.

Наиболее интенсивно излучает теплоту пламя горящих летучих веществ, выделяющихся при горении твердого и жидкого топлива.
Менее интенсивно излучение горящего кокса и раскаленных частиц золы, наиболее слабым оказывается излучение трехатомных газов. Двухатомные газы практически не излучают теплоты. По интенсивности излучения в видимой области спектра различают:

  • светящийся
  • полусветящийся
  • несветящийся факелы.

Излучение светящегося и полусветящегося факела определяется наличием твердых частиц—коксовых, сажистых и золовых в потоке продуктов сгорания. Излучение не-светящегося факела — излучением трехатомных газов.
Интенсивность излучения твердых частиц зависит от их размера и концентрации в топочном объеме. По удельной интенсивности излучения коксовые частицы приближаются к абсолютно черному телу, но при сжигании пыли твердого топлива их концентрация в факеле мала (примерно 0,1 кг/м3) и поэтому излучение коксовых частиц на экраны топки составляет 25—30 % суммарного излучения топочной среды. Золовые частицы заполняют весь топочный объем, концентрация их зависит от зольности топлива. Тепловое излучение золовых частиц в факельных топках составляет 40—60 % суммарного излучения топочной среды. Сажистые частицы образуются при сжигании мазута и природного газа. В ядре факела они имеют высокую концентрацию и обладают большой излучательной способностью. Излу-чение трехатомных газов, заполняющих объем топочной камеры, определяется их концентрацией и толщиной объ¬ема излучения.

Доля излучения трехатомных газов составляет 20—30 % суммарного излучения. В газомазутных топках условно разделяют длину факела на две части:

  • светящуюся
  • несветящуюся

Интенсивность излучения ядра факела мазута в 2—3 раза выше, чем ядра факела при сжигании пыли твердого топлива.
Тепловосприятие экранов топки определяется интенсивностью излучения топочной среды и тепловой эффективностью экранов. Увеличение интенсивности излучения среды топки повышает падающий на экраны тепловой поток. Снижение тепловой эффективности экранов уменьшает их тепловосприятие.

Факторы влияющие на продолжительность первой фазы сгорания

  1. Воспламеняемость топлива, которая оценивается цетановым числом. Чем выше цетановое число, тем лучше воспламеняемость.
  2. Давление и температура воздушного заряда в начале впрыска топлива. При увеличении давления и температуры период задержки воспламенения сокращается.

  3. Тип камеры сгорания, который оказывает влияние на задержку воспламенения, гак как в зависимости от типа камеры по разному будет проходить распространение топлива по объему воздушного заряда и в пристеночной зоне. Кроме того температура стенок камеры сгорания также будет зависеть от ее типа.
  4. Интенсивность направленного движения заряда в камере. Увеличение интенсивности движения заряда несколько сокращает период задержки воспламенения. На рисунке показаны способы создания вихревого движения заряда в цилиндре при впуске.
  5. Тип распылителя форсунки. Форсунка закрытого типа сокращает период задержки воспламенения. Разделенные камеры сгорания имеют основную и вспомогательную полости, соединенные горловиной. В настоящее время применяют в основном вихревые камеры сгорания и предкамеры, где ось соединительной горловины направлена по касательной к внутренней поверхности камеры сгорания. Разделенные камеры сгорания обеспечивают более полное сгорание топлива и менее жесткую работу за счет сокращения времени задержки воспламенения.
  6. Нагрузка. С ростом нагрузки увеличивается давление и температура цикла, что приводит к повышению теплового режима двигателя, а это к свою очередь вызывает сокращение времени задержки воспламенения.
  7. Частота вращения коленчатого вала. Увеличение частоты вращения коленчатого вала приводит к улучшению распыления, увеличению давления и температуры конца сжатия, что способствует сокращению первой фазы горения, особенно в дизелях с разделенными камерами сгорания. Продолжительность первой фазы горения при этом растет.

Вторая фаза горения (02) — самовоспламенение и быстрое горение начинается с момента воспламенения (см. рис. точка 2) и заканчивается в момент достижения максимального давления в цилиндре (точка 3). В первую очередь сгорают однородные слои смеси топлива и воздуха хорошо перемешанные между собой. При этом пламя распространяется очень быстро, соответственно быстро растет давление, в определенных случаях с образованием ударной волны, распространяющейся со скоростью звука. Но в отличие от карбюраторных двигателей в дизелях эти волны не переходят в детонационные, так как структура смеси по всему объему камеры сгорания неравномерна. Это позволяет получать более высокую степень сжатия.

После того, как сгорит хорошо подготовленная к воспламенению топливовоздушная смесь, горение продолжается в зонах, где структура смеси более неравномерна. Здесь на индикаторной диаграмме наблюдается некоторый спад роста давления.

В течение второй фазы выделяется 30—45 % всей теплоты. Температура рабочего тела возрастает до 1600—1800 К. Максимальное давление может достичь 6—9 МПа, а при наддуве превысить 10 МПа. Продолжительность второй фазы 0,8—1,5 мс, что соответствует 10—20° поворота коленчатого вала.

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации