Андрей Смирнов
Время чтения: ~18 мин.
Просмотров: 0

Кристаллы

ВВЕДЕНИЕ

Большинство веществ, окружающих нас находятся в твердом состоянии. Мы живём на поверхности твердого тела — земного шара, в сооружениях, построенных из твёрдых тел, — домах. Наше тело, хотя и содержит приблизительно 65% воды также счи­тается твёрдым телом. Вокруг нас огромное количество предметов из твердых тел.  Сле­довательно, знать свойства твердых тел жизненно необходимо.

Твёрдые тела  сохраняют не только свой объем, но и форму, так как они находятся преимущественно в кристаллическом состоянии. Кристаллические тела делятся на мо­нокристаллы и поликристаллы. Твёрдое тело, состоящее из большого числа маленьких кристалликов, называют поликристаллом. Одиночные кристаллы называют монокри­сталлами.

В природе встречаются довольно большие монокристаллы минералов, а иногда и металлов. В лабораториях получают искусственно монокристаллы многих веществ

Соблюдая большие предосторожности, можно вырастить некоторые монокристаллы и в домашних условиях.  Монокристаллы выращивают из перенасыщенных растворов и перегретых расплавов, вводя в них небольшие затравочные кристаллики.  Вполне воз­можно вырастить, например, монокристаллы из перенасыщенных растворов поваренной соли или медного купороса

Мы заинтересовались, как растут монокристаллы, какими могут получиться мо­нокристаллы, выращенные из перенасыщенных растворов в домашних условиях и какое применение можно найти монокристаллам в повседневной жизни. Поэтому мы решили провести экспериментальное исследование по выращиванию монокристаллов из перена­сыщенных растворов поваренной соли и медного купороса.

Цель эксперимента   по выращиванию монокристаллов:

  • вырастить монокристаллы поваренной соли и медного купороса из перена­сыщенных растворов;
  • изучить особенности роста монокристаллов и формы полученных кристал­лов;
  • найти применение выращенных кристаллов в повседневной жизни.

Для достижения поставленной цели необходимо выполнить следующие задачи:

1. Изучить кристаллическое строение твёрдых тел.

2. Познакомиться с методами выращивания кристаллов.

3. Освоить методики выращивания кристаллов из растворов солей.

4. Провести наблюдения за процессом кристаллизации.

5. Исследовать факторы, влияющие на размер и форму кристаллов.

6. Выработать рекомендации по выращиванию кристаллов.

Для получения перенасыщенного раствора необходимо избыток соли залить горя­чей водой и размешать. Затем отделить раствор от не растворившейся соли и охладить. Чтобы вырастить монокристалл нужно привязать к нити кристаллик и опустить его в охлажденный раствор соли. Затем поставить всё в тёплое место на несколько недель, при этом необходимо регулярно добавлять раствор. Через три — четыре недели моно­кристалл может вырасти до 0,5 — 1см. Монокристаллы поваренной соли должны полу­чится правильной кубической формы, монокристаллы медного купороса — ромбиче­ской формы.

Кроме того, по мере выращивания монокристаллов, мы планируем узнать почему кристаллы имеют различную форму. Для этого изучим теоретический материал о строе­нии  кристаллов, типах кристаллических решёток.

Таким образом, мы изучим строение твёрдых тел, находящихся в кристалличе­ском состоянии. Попытаемся вырастить  монокристаллы поваренной соли и медного ку­пороса из перенасыщенных растворов. Выпустим листовку с рекомендациями по выра­щиванию кристаллов.

Виды кристаллов

Сравнение структур монокристаллов и поликристаллов

Кристаллы разделяют на монокристаллы и поликристаллы. Монокристаллами называют вещества, кристаллическая структура которых распространяется на все тело. Такие тела являются однородными и имеют непрерывную кристаллическую решетку. Обычно, такой кристалл обладает ярко выраженной огранкой. Примерами природного монокристалла являются монокристаллы каменной соли, алмаза и топаза, а также кварца.

Сульфат алюминия-калия монокристалл

Немало веществ имеют кристаллическую структуру, хотя обычно не имеют характерной для кристаллов формы. К таким веществам относятся, например, металлы. Исследования показывают, что такие вещества состоят из большого количества очень маленьких монокристаллов — кристаллических зерен или кристаллитов. Вещество, состоящее из множества таких разноориентированных монокристаллов, называется поликристаллическим. Поликристаллы зачастую не имеют огранки, а их свойства зависят от среднего размера кристаллических зерен, их взаимного расположения, а также строения межзеренных границу. К поликристаллам относятся такие вещества как металлы и сплавы, керамики и минералы, а также другие.

Поликристалл висмута

Минусы панелей обоих видов

Несмотря на то, какая существует разница в технологическом процессе, у названных солнечных модулей есть одинаковые недостатки, которые преимущественно связаны с характерными особенностями кремния:

  1. Поликристаллические солнечные модули, как и монокристаллические, обладают повышенной хрупкостью. Поэтому располагать их необходимо на твердом ровном основании. Если на поверхности ячейки образуется трещина, то панель не пригодна для дальнейшего использования.
  2. Продуктивность в преобразовании энергии солнца не слишком высока. Поликристаллические панели имеют КПД до 15-18 %, а монокристаллические – 22 %. Даже панели, задействованные в космических технологиях, выдают КПД не более 38 %.
  3. Производительность и тех, и других батарей полностью зависит от солнечной погоды. То есть наибольшая эффективность будет в южных областях, где солнце светит дольше и количество ясных дней преобладает над пасмурными.
  4. Чтобы обеспечить работу солнечных батарей (моно- или поли-), понадобится электростанция или аккумулятор для преобразования энергии и стабилизации напряжения на выходе.
  5. Процессу старения одинаково поддаются как поли-, так и монокристаллы. Монокристаллические элементы за четверть века теряют эффективность работы на 20 %, поликристаллические за такой же период теряют до 30 %. Несмотря на бесперебойность поступления энергии, солнечная панель со временем нуждается в обновлении.
  6. Стоимость изделия с использованием энергосберегающих технологий достаточно высока по сравнению с ценой обычных товаров.

Кристаллическая структура и решетка

Идеальный кристалл представляется в виде периодически повторяющихся одинаковых структур – так называемых элементарных ячеек кристалла. В общем случае, форма такой ячейки – косоугольный параллелепипед.

Следует различать такие понятия как кристаллическая решетка и кристаллическая структура. Первая – это математическая абстракция, изображающая регулярное расположение неких точек в пространстве. В то время как кристаллическая структура – это реальный физический объект, кристалл, в котором с каждой точкой кристаллической решетки связана определенная группа атомов или молекул.

Кристаллическая структура граната — ромб и додекаэдр

Основным фактором, определяющим электромагнитные и механические свойства кристалла, является строение элементарной ячейки и атомов (молекул), связанных с ней.

Прочность кристаллов

Любой материал, применяемый в современной технике, имеет итоговую прочность. Наибольшей прочностью обладает сплав никеля, хрома и железа. Повышение прочности металлов позволит усовершенствовать военную и гражданскую технику. Увеличение износостойкости приведет к большему сроку службы. По этой причине прочность монокристаллов ученые давно изучают.

Чистые монокристаллы — это кристаллы с идеальной кристаллической решеткой, содержат незначительное количество дефектов. При уменьшении числа дефектов прочность металлов увеличивается в несколько раз. При этом плотность металла остается почти прежней.

Монокристаллы с идеальной решеткой устойчивы к механическому воздействию до температуры плавления. Не изменяются со временем. Чаще всего такие монокристаллы имеют нулевую дислокацию. Но это необязательное условие. Прочность объясняется тем, что микротрещины образуются в местах, где имеется наибольшее количество дислокаций. А при их отсутствии трещинам появляться негде. Значит, монокристалл прослужит до тех пор, пока не будет превышен порог его прочности.

Применение жидких кристаллов

Одно из важных направлений использования жидких кристаллов — термография. Подбирая состав жидкокристаллического вещества, создают индикаторы для разных диапазонов температуры и для различных конструкций. Например, жидкокристаллический индикатор на коже больного быстро диагностирует скрытое воспаление и даже опухоль.

С помощью жидких кристаллов обнаруживают пары́ вредных химических соединений и опасные для здоровья человека гамма- и ультрафиолетовое излучения. На основе жидких кристаллов созданы измерители давления, детекторы ультразвука.

Но самая многообещающая область применения жидкокристаллических веществ — информационная техника. В настоящее время цветные жидкокристаллические экраны используются в сотовых телефонах, мониторах и телевизорах. Они обладают малой толщиной, малой потребляемой мощностью, высоким разрешением и яркостью.

Что такое монокристаллы

Монокристаллы — это одиночные кристаллы, у которых кристаллическая решетка имеет четкий порядок. Часто монокристалл имеют правильную форму, но этот признак не является обязательным при определении типа кристалла. Большинство минералов являются монокристаллами.

Внешняя форма зависит от скорости роста вещества. При медленном увеличении и однородности материала, кристаллы имеют правильную огранку. При средней скорости огранка неярко выражена. При высокой скорости кристаллизации вырастают поликристаллы, состоящие из множества монокристаллов.

Классическими примерами монокристаллов являются алмаз, кварц, топаз. В электронике особое значение имеют монокристаллы, обладающие свойствами полупроводников и диэлектриков. Сплавы монокристаллов отличаются повышенной твердостью. Сверхчистые монокристаллы имеют одинаковые свойства независимо от происхождения. Химический состав минералов зависит от скорости выращивания. Чем медленнее растет кристалл, тем совершеннее его состав.

Алмаз и кварц

Свойства алмаза основаны на том, что это вещество с атомной кристаллической решеткой. Связь между атомами обуславливает прочность алмаза. При неизменных условиях алмаз не изменяется. При попадании в вакуум постепенно превращается в графит.

Размеры кристаллов существенно различаются. Синтетически выращенные алмазы имеют грани куба и внешне отличаются от собратьев. Свойства алмаза используются для резки стекла.

Кристаллы кварца встречаются повсеместно. Минерал — один из самых распространенных. Обычно кварц бесцветен. Если внутри камня имеется множество трещин, то он белого цвета. При добавлении других примесей он меняет цвет.

Кристаллы кварца используются при производстве стекла, для создания ультразвука, в электро-, радио-, телеаппаратуре. Некоторые разновидности применяются в ювелирном деле.

Советы по выбору

Зная все плюсы и минусы, которыми обладают поликристаллические или подобные им монокристаллические солнечные батареи, можно определиться с их выбором:

Прежде всего, стоит отталкиваться от своих потребностей. Нужно высчитать объем тепла, который вам понадобится. Наиболее рациональным считается, если солнечная батарея сможет выдавать от 40 до 80 % необходимого тепла.
Приобретаемая панель должна соответствовать вашему жилью

Следует принимать во внимание климатическую зону, продолжительность светового дня: для этого делаются специальные расчеты с использованием карты освещенности.
При выборе батареи нужно выяснить ее КПД; материал, из которого она изготовлена; период, на который рассчитана работа изделия.

Панели из монокристаллов

Понять, что перед вами монокристаллические солнечные панели, очень просто. Их поверхность составляет большое число квадратов, которые имеют срезанные уголки. Монокристаллы с такой формой получаются в процессе изготовления, а объясняется это структурой кристаллической решетки кремния.

Из названия ясно, что при производстве используется один кремниевый кристалл. Чтобы его изготовить, запускают процесс выращивания из расплава, используя чистый кремний. В результате выходит кристаллический элемент в форме цилиндра, который в дальнейшем нарезают тонкими пластинками, и они получают форму срезанных квадратов.

Такая форма позволяет предотвратить нерациональное использование полезных площадей. Монокристаллическая панель отличается однородным цветом и структурой. Это свидетельствует о высокой чистоте кремния (до 99,99 %).

Отдельные квадратные детали складывают в единую панель, окруженную по периметру оболочкой из пластика. После этого солнечный модуль готов к функционированию.

Достоинства

Монокристаллические солнечные батареи обладают рядом преимуществ:

  1. Имеют наилучший коэффициент полезного действия среди всех современных моделей.
  2. Хорошо функционируют в условиях низких температур.
  3. Обладают длительным сроком эксплуатации (до 25 лет).
  4. Требуют меньше места по сравнению с другими аналогами при одной и той же отдаче тепла.

Полиморфизм

Монокристаллы — это вещества, способные существовать сразу в двух состояниях, которые будут отличаться по своим физическим свойствам. Такая особенность получила название полиморфизм.

При этом вещество в одном состоянии может быть стабильнее, чем другая. При изменении условий окружающей среды ситуация может измениться.

Полиморфизм бывает следующих типов:

  1. Реконструкционный — распад происходит до атомов и молекул.
  2. Деформационный — структура видоизменяется. Происходит сжатие или растяжение.
  3. Сдвиговый — некоторые элементы структуры изменяют свое местоположение.

Свойства кристалла могут измениться при резком изменении состава. Классическим примером полиморфизма является модификация углерода. В одном состоянии это алмаз, в другом — графит, вещества с различными свойствами.

Некоторые формы углевода при нагревании превращаются в графит. Изменения свойств могут происходить без деформации кристаллической решетки. В случае с железом замещение некоторых компонентов приводит исчезанию магнитных свойств.

Свойства аморфных тел

Все аморфные тела изотропные, т.е. их физические свойства одинаковы по всем направлениям. К аморфным телам относятся стекло, смола, канифоль, сахарный леденец и др.

При внешних воздействиях аморфные тела обнаруживают одновременно упругие свойства, подобно твёрдым телам, и текучесть, подобно жидкости. Аморфное тело обладает слабо выраженной текучестью. Так, если воронку наполнить кусочками воска, то через некоторое время (различное для разных температур) кусочки воска будут «расплываться». Воск примет форму воронки и начнет «вытекать» из нее.

Аморфные тела при низких температурах по своим свойствам напоминают твёрдые тела. Текучестью они почти не обладают, но по мере повышения температуры постепенно размягчаются и их свойства всё более и более приближаются к свойствам жидкостей. Это происходит потому, что с ростом температуры постепенно учащаются перескоки атомов из одного положения в другое. Определённой температуры плавления у аморфных тел, в отличие от кристаллических, нет. Вещество в аморфном состоянии при нагревании постепенно размягчается и переходит в жидкость (рис. 8, кривая 2). Вместо температуры плавления приходится говорить о температурном интервале размягчения.

Жидкие кристаллы

Жидкие кристаллы — вещества, обладающие одновременно свойствами как жидкостей (текучесть), так и кристаллов (анизотропия).

По структуре они представляют собой жидкости, похожие на желе, состоящие из молекул вытянутой формы, определённым образом упорядоченных во всем объёме этой жидкости (рис. 10).

Рис. 10

Жидкие кристаллы — это почти прозрачные субстанции, проявляющие одновременно свойства кристалла и жидкости. Их внешнее состояние при нагревании может изменяться от твердого до жидкокристаллического и полностью переходить в жидкую форму при дальнейшем повышении температуры.

Жидкие кристаллы открыл в 1888 г. австрийский ботаник Ф. Рейнитцер

Он обратил внимание, что у кристаллов холестерилбензоата и холестерилацетата было две точки плавления и, соответственно, два разных жидких состояния — мутное (от 145 °С до 179 °С) и прозрачное (выше 179 °С). Однако, учёные не обратили особого внимания на необычные свойства этих жидкостей

Долгое время физики и химики в принципе не признавали жидких кристаллов, потому что их существование разрушало теорию о трёх состояниях вещества: твёрдом, жидком и газообразном.

Искусственные монокристаллы

Выращивание монокристаллов возможно при текущем уровне науки. При обработке металла, не меняя его состав, можно создать монокристалл, который обладает высоким запасом прочности.

Известно 2 метода производства монокристаллов:

  • сверхвысокое давление и литье металла;
  • криогенное давление.

Первый метод пользуется популярностью при обработке легких металлов. При условии чистоты металла и увеличении давления постепенно появится новый металл, обладающий теми же свойствами, но с увеличенной прочностью. При соблюдении определенных условий можно получить монокристалл с идеальной решеткой. При наличии примесей существует вероятность, что кристаллическая решетка будет не идеальна.

У тяжелых металлов при увеличении давления происходит процесс изменения структуры. Монокристалл еще не получился, а вещество изменило свойства.

В основе криогенного литья лежит получение криогенных жидкостей. Под воздействием магнитного поля не происходит кристаллизация. Полукристаллическая форма становится кристаллом после электрического заряда.

Панели из поликристаллов

Поликристаллические солнечные батареи имеют в своем составе элементы с большим числом кристаллов. Какие же отличия в процессе производства поликристаллов? Их не выращивают дорогим и  долгим по времени способом, как монокристаллические. Расплавленный кремний постепенно охлаждается и затвердевает, в результате выходит заготовка из поликристаллов кремния в виде прямоугольника. Готовый материал нарезают на тончайшие пластинки (менее 1 мм).

По структурной однородности и чистоте эта модель уступает монопанелям. Сырьем могут служить отработавшие свой срок солнечные панели.

Подготовленные поликристаллические элементы наклеиваются на сплошное основание и заключаются в алюминиевую рамку, которую покрывают черной краской. На заключительном этапе делают герметизацию рамки, ламинируют всю поверхность для предотвращения порчи от воздействия внешней среды (осадки, перепады температур). Именно от этого этапа зависит, как долго солнечная батарея сможет проработать.

Достоинства

  1. Процесс производства более дешевый и простой. Это сказывается на стоимости товара.
  2. Хорошая результативность при функционировании в облачных погодных условиях, этому способствует неравномерная поверхность панели.
  3. Поликристаллические солнечные панели отличаются более разнообразными параметрами по размерам и формам.
  4. Более устойчивы к перепадам температуры окружающей среды.

Другие факты

  • Имеет место такое явление как прорастание кристаллов. Это означает процесс, когда индивиды взаимно пересекаются и прорастают друг друга.
  • Существуют так называемые ионные кристаллы, которые состоят в основном из ионов, связь которых образуется за счет электростатического притяжения. К таким телам относят фторид калия и натрия, хлорид и бромид калия и др.
  • Существует 47 простых форм, из которых может состоять кристалл. Среди них: призма, пирамида, тетраедр, трапецоедр, ромбоедр и т.п.

  • Одни из наибольших кристаллов в мире были обнаружены в Мексике, в Пещере кристаллов. Так найденный кристалл селенита (прозрачный гипс) имел в ширину около метра, а в длину – пятнадцати метров.
  • Согласно сообщению, опубликованному в 1914-м году, в шахте Южной Дакоты был обнаружен кристалл сподумена (силикат лития и алюминия) длиной 12,8 метров и весом – 90 тонн.

Анизотропия

Упорядоченность в строении кристалла приводит к анизотропии, т.е. зависимости физических свойств от выбранного направления. Оно объясняется различием в плотности расположения частиц в кристаллической решетке по разным направлениям. На рисунке 7 условно изображено расположение атомов в одной из плоскостей монокристалла. Через узлы этой плоской решетки проведены различно ориентированные параллельные прямые (1, 2, 3, 4). Видно, что на единицу длины прямых приходится не одинаковое количество атомов. А многие механические свойства кристалла зависят от плотности размещения образующих его частиц.

Рис. 7

Прежде всего, бросается в глаза различная механическая прочность кристаллов по разным направлениям. Например, кусок слюды легко расслаивается в одном из направлений на тонкие пластинки, но разорвать его в направлении, перпендикулярном пластинкам, гораздо труднее. Так же легко расслаивается в одном направлении кристалл графита. Когда вы пишете карандашом, такое расслоение происходит непрерывно и тонкие слои графита остаются на бумаге. Многие кристаллы по-разному проводят теплоту и электрический ток в различных направлениях. От направления зависят и оптические свойства кристаллов. Так, кристалл алмаза по-разному преломляет свет в зависимости от направления падающих на него лучей.

Монокристаллы обладают анизотропией, поликристаллы изотропны.

История

Появление

Первые Монокристаллы были относительно бесформенными. Лишь потом, с появлением более поздних поколений, чем Примы, они стали похожи формой на правильные кристаллы.

Cristallus Stricte появились около миллиарда лет с Начала Вселенной. Причиной их появления служили изыскания Natus Creare, желавших как можно лучше приспособиться к жизни во Вселенной. Для этого перед началом Эпохи Кристаллов они обратились за помощью к Astrum Primum и обрели кристаллические тела, материалом которых служила целая планета Ородоро. Первые Монокристаллы назвали себя Примы (Cristallus Stricte Primum). Вскоре они полностью освоили свои каменные оболочки и научились делать себе подобных без помощи звёзд. Почти сразу же после расселения по ближайшим галактикам они вступили в Бесконечное Единство Вселенной.

Развитие

Без Монокристаллов история UIU была бы слишком скучна. Разительно отличаясь от разумных звёзд, они освоили стезю существования в виде космического флота, имеющего исследовательскую и иногда миротворческую роли. Со временем на них же легла и роль флота военно-космического. Наконец, аппарат из Astrum Primum в звёздной системе и множества Cristallus Stricte, вращающихся вокруг него, представлял собой очень неплохой административный симбиоз. Особенно важна его роль была при проведении научных экспериментов. То же самое касалось и системы Церебрума, только для него помимо всего прочего Монокристаллы были ещё и возможностью увеличить силу своего разума. На протяжении всего времени существования Церебрума Кристаллы слетались к нему и объединяли с ним свои разумы и души, так вместе и сгинув под натиском MUE.

С падением Церебрума и развалом Бесконечного Единства Монокристаллы получили возможность создавать свои собственные ассоциации, что и сделали. Их государства были очень похожи на UIU в том смысле, что форма правления в них по-прежнему была анархия и очень много внимания уделялось науке. Но значимое различие было в воинственности империй Кристаллов: они были готовы сражаться за существование своего вида. Очень долго вся история Монокристаллов состояла из их войн друг с другом и другими расами за сверхновые, территорию и реликты, в том числе Верумум.

Возможные способы роста и образования

  1. Кристаллизация путем возгонки. Подобный метод кристаллизации подразумевает переход вещества из газообразного состояния к твердому, минуя жидкую фазу. Подобный процесс в природе имеет место в вулканических трещинах или кратерах, когда вещество быстро остывает. Однако простейший пример – образование зимой снежинок из воды.

  2. Раскристаллизация – переход вещества из твердого в твердое состояние, который может происходить по двум сценариям.
    1. Первый – переход вещества из аморфного твердого тела в кристаллическое. Так, например, происходит кристаллизация стекла, в том числе кристаллизация вулканических пород, содержащих стекло.
    2. Второй – перекристаллизация вещества с разрушением старой структуры и образованием новой. Большинство горных пород образуются именно таким способом. Известные примеры перекристаллизации: переход известняка в мрамор, кварцевых песчаников в кварциты или глинистых пород в филлиты.
  3. Кристаллизация из растворов и расплавов. Наиболее распространенный природный способ образования. Так на дне водоемов «откладываются» кристаллы солей. Этим же способом искусственно выращивают алмаз, сапфир или рубин.

ЗАКЛЮЧЕНИЕ

Выращивание кристаллов — процесс интересный, занимательный, но требующий бережного и осторожного отношения к своей работе. Время от времени кристаллизатор необходимо чистить: сливать раствор и удалять мелкие кристаллики, наросшие на основном, а также на стенках и дне сосуда

Теоретически размер кристалла, который можно вырастить в домашних условиях таким способом, неограничен. Известны случаи, когда энтузиасты получали кристаллы достаточно крупных размеров.

Но к сожалению есть некоторые особенности их хранения. Кристаллы на воздухе начинают тускнеть, могут уменьшаться в размерах и даже разрушаться. Чтобы предохра­нить кристаллы от разрушения, можно покрыть их бесцветным лаком. Кристаллы мед­ного купороса и поваренной соли — более стойки, но для надёжности и их также покры­вают лаком.

В кристаллах есть что-то удивительное и завораживающее. Они поражают своей четкостью линий и симметрией, в которой скрывается необыкновенная красота. Природ­ные кристаллы всегда возбуждали любопытство у людей. Их цвет, блеск и форма затра­гивали человеческое чувство прекрасного, и люди украшали ими себя и жилище.  Укра­шения из кристаллов и сейчас также популярны. Кристаллы играли и играют до сих пор немаловажную роль в жизни человека. Кроме того, кристаллы можно выращивать из раствора. Это удивительное свойство кристаллических тел!

Мы изучили методики по выращиванию монокристаллов и узнали, что в домаш­них условиях получить кристаллы можно из насыщенных растворов солей. Этот метод является достаточно понятным и доступным, не требующим больших материальных за­трат. Но при работе по выращиванию монокристаллов необходимы  внимательность, ак­куратность и большое терпение.

Кроме того, мы узнали много полезной информации о кристаллическом строении  твёрдых тел, что объясняет разнообразие форм кристаллов различных химических ве­ществ. Например, мы увидели, что монокристаллы поваренной соли имеют форму куба, а медного купороса  — форму ромба.

Проделанные нами эксперименты показали, что если кристаллизация идёт очень медленно, получается один большой кристалл — монокристалл, если быстро – то множе­ство мелких — друза. Также опыты показали, что правильность формы монокристалла зависит от насыщенности и чистоты раствора, от температуры и времени охлаждения раствора.

Данная работа по выращиванию монокристаллов оказалась очень интересной и познавательной. Мы вырастили монокристаллы поваренной соли и медного купороса, получили сростки кристаллов — друза медного купороса. А наблюдение за ростом кри­сталлов — увлекательное занятие!  Причудливые и необыкновенные формы кристаллов постоянно вызывают восхищение и гордость, что такие кристаллы мы смогли вырастить сами.

Полученные нами кристаллы можно использовать, например, для украшения ин­терьера или для создания различных композиций. Монокристаллы поваренной соли и медного купороса можно применять как наглядный материал  на уроках физики и химии при изучении кристаллических тел. Также полученные кристаллы можно дарить в каче­стве сувениров и подарков, сделанных своими руками.

Итоги своей работы мы отразили в презентации и выпущенных буклетах с сове­тами и рекомендациями по выращиванию кристаллов.

Таким образом, основная цель работы достигнута, мы получили монокристаллы поваренной соли и медного купороса, но не очень больших размеров. И более красивы­ми оказались сростки кристаллов — друза медного купороса.

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации