Андрей Смирнов
Время чтения: ~17 мин.
Просмотров: 1

Фреон r404a: описание, технические характеристики, применение

Характеристики R134a на линии насыщения

Темпе-ратура, C Абсолютное
давление, 105Па
Удельный объем Плотность Удельная энтальпия, кДж/кг Удельная теплота парообра-зования,
кДж/кг
Удельная энтропия, кДж/(кг*К)
жидкости, дм3/кг пара, дм3/кг жидкости, кг/дм3 пара, кг/м3 жидкости пара жидкости пара
-50 0,295 0,693 604,615 1442,547 1,654 136,0 367,3 231,3 0,742 1,779
-45 0,391 0,7 463,457 1428,411 2,158 142,3 370,5 228,2 0,770 1,770
-40 0,512 0,707 360,036 1414,175 2,777 148,5 373,6 225,0 0,797 1,762
-35 0,661 0,714 283,15 1399,816 3,532 154,9 376,7 221,8 0,824 1,755
-30 0,844 0,722 225,21 1385,306 4,44 161,2 379,7 218,5 0,850 1,749
-25 1,064 0,73 180,995 1370,619 5,525 167,6 382,8 215,2 0,876 1,743
-20 1,327 0,738 146,855 1355,725 6,809 174,0 385,8 211,8 0,901 1,738
-15 1,638 0,746 120,204 1340,593 8,319 180,4 388,8 208,4 0,927 1,734
-10 2,004 0,755 99,186 1325,19 10,082 186,9 391,7 204,8 0,951 1,730
-5 2,431 0,764 82,45 1309,479 12,129 193,4 394,6 201,2 0,976 1,726
2,925 0,773 69,005 1293,424 14,492 200,0 397,4 197,4 1,000 1,723
5 3,492 0,783 58,111 1276,98 17,209 206,6 400,2 193,6 1,024 1,720
10 4,141 0,794 49,214 1260,104 20,32 213,3 403,0 189,6 1,048 1,717
15 4,878 0,805 41,893 1242,744 23,87 220,1 405,6 185,5 1,071 1,715
20 5,710 0,816 35,827 1224,845 27,912 227,0 408,2 181,3 1,095 1,713
25 6,647 0,829 30,766 1206,345 32,503 233,9 410,8 176,8 1,118 1,711
30 7,695 0,842 26,517 1187,173 37,712 241,0 413,2 172,2 1,141 1,709
35 8,863 0,857 22,927 1167,25 43,617 248,1 415,6 167,4 1,164 1,707
40 10,159 0,872 19,876 1146,481 50,313 255,4 417,8 162,4 1,187 1,706
45 11,594 0,889 17,268 1124,757 57,911 262,9 419,9 157,0 1,210 1,704
50 13,176 0,907 15,026 1101,943 66,551 270,5 421,9 151,3 1,234 1,702

Общее описание R410a

R410a повсеместно называется как преимущественный долгосрочный хладагент-заменитель для R22 , но он является также альтернативой для R13B1. Эта смесь хладагента представляет собой околоазеотроп с очень низким температурным глайдом.

Существенным отличием от R22 является более высокое давление. Так R410a достигает давления 25 бар уже при температуре сжижения примерно 42°C, R22 напротив, только примерно при 62°C. Большим преимуществом R410a является очень высокая объемная холодопроизводительность, которая может быть до 50% выше чем у R22. Поэтому могут применяться более мелкие компоненты установки, благодаря чему – по сравнению с R22 – можно построить более компактную установку.

Компоненты холодильной установки, как например, компрессоры, должны быть рассчитаны на более высокое давление. Такая разработка уже ведется полным ходом.

Из-за более высоких рабочих давлений R410a не пригоден для переналадки существующих установок с R22. Для подобной переналадки методом ретрофита мы рекомендуем после детальной проверки возможно Solkane 407C.

Возможности замены для хладагента R410a имеются в кондиционерах, тепловых насосах, холодильных складских камерах, для производственного и промышленного охлаждения и при замене R13B1 в диапазоне низких температур. Методы ретрофита для R13B1 уже успешно проводились.

Виды фреона для систем кондиционирования

Около полувека, основным хладагентом в бытовых системах кондиционирования воздуха был фреон 22. Приблизительно с середины 80-х годов прошлого века, на его использование начались серьезные гонения, так как якобы хлор, который является составляющей этого газа, оказывает влияние на озоновый слой, защищающий нашу планету от жесткого ультрафиолета. Этот вброс хоть и не был на 100% доказан, но эта информация повлекла за собой разработку новых и более безопасных хладагентов: фреонов R410 и R407.

Новые виды не смогли полностью вытеснить R22 с рынка климатической техники, благодаря простоте обслуживания и некоторым физическим свойствам этого газа. Сегодня в бытовых сплит-системах чаще всего используются: R22; R410 и R407.

Фреон R22 чаще всего можно встретить в системах кондиционирования, применяющихся в быту, производстве и транспортировке скоропортящихся грузов. Так как этот на этом типе хладагента работала практически вся холодильная техника, выпущенная до конца прошлого века, заправка кондиционеров этим газом наиболее востребована.

Фреон R410 – это бесцветный газ, который является полноценной заменой предшественнику. Сейчас он используется в новой климатической технике, независимо от ее назначения. Одной из особенностей этого заза является то, что при утечке его из кондиционера, более чем 35% требуется полная перезаправка техники.

Фреон R407 – это не что иное, как смесь нескольких газов, каждый их которых отвечает за определенные физические свойства хладагента. Чаще всего применяется в мультизональных или полупромышленных сплит-системах. Этим типом газа нельзя дозаправлять климатическую технику: при утечках его необходимо полностью слить и только после этого производить процедуру заправки.

Зависимость температуры кипения, конденсации фреонов от давления, таблица

Зависимость температуры кипения фреона – то же самое, что его испарения и конденсации. По сути, значение показывает, при какой температуре фреон меняет агрегатное состояние.

В этой публикации мы привели две таблицы для наиболее распространенных фреонов: R12, R22, R23, R134a, R142b, R290, R404a, R406a, R407c, R409A, R410a, R502, R507, R600, R717. Также вы можете скачать общую таблицу температуры кипения фреонов по этой ссылке.

Температура кипения фреонов R12, R22, R23, R134, R142b, R290, R404a, R406a

t, °C R12 R22 R23 R134 R142b R290 R404a R406a
90 26.88 31.43 16.4 35.82
80 22.04 25.32 13.07 29.94 21.5
70 17.85 29 20.16 10.23 24.72 17.3
60 14.25 23.2 15.81 7.85 20.14 27.62 13.6
55 13.08 20.75 14 6.81 18.08 24.76 11.9
50 11.9 18.3 12.18 5.87 16.16 21.9 10.4
45 10.25 16.3 10.67 5.02 14.38 19.51 9.1
40 8.6 14.3 9.16 4.25 12.73 17.11 7.8
35 7.53 12.6 7.93 3.55 11.21 15.13 6.7
30 6.45 10.9 6.7 2.94 9.82 13.14 5.7
25 5.39 9.5 45.03 5.71 2.38 8.55 11.5 4.8
20 4.67 8.1 40.11 4.72 1.9 7.39 9.86 4
15 3.95 6.95 35.56 3.93 1.46 6.33 8.52 3.3
10 3.23 5.8 31.37 3.14 1.08 5.38 7.18 2.6
5 2.66 4.89 27.54 2.54 0.75 4.52 6.11 2.1
2.08 3.98 24 1.93 0.47 3.75 5.03 1.6
-5 1.64 3.27 20.85 1.47 0.22 3.06 4.18 1.1
-10 1.19 2.55 17.96 1.01 2.45 3.32 0.8
-15 0.85 2.01 15.37 0.67 1.91 2.67 0.4
-20 0.51 1.46 13.04 0.33 1.44 2.02 0.2
-25 0.26 1.05 10.96 -0.06 1.03 1.53 -0.1
-30 0.64 9.12 -0.15 0.68 1.04 -0.2
-35 -0.18 0.25 7.51 -0.32 0.37 0.68 -0.4
-40 -0.36 0.05 6.09 -0.48 0.12 0.32 -0.62
-45 -0.49 -0.2 4.86 -0.59 -0.11 -0.66
-50 -0.61 -0.35 3.8 -0.7 -0.18 -0.8
-55 -0.69 -0.49 2.89 -0.77 -0.35 -0.83
-60 -0.77 -0.63 2.12 -0.84 -0.52 -0.9
-65 -0.83 -0.74 1.48 -0.88 -0.63 -0.94
-70 -0.88 -0.81 0.94 -0.92 -0.74

Температура кипения фреонов R407c, R409A, R410a, R502, R507a, R600, R717

t, °C R407c R409A R410a R502 R507a R600 R717
90 29.43 50.14
80 23.99 40.4
70 19.26 30.92 9.91 32.12
60 24.2 15.2 25.01 28.85 7.72 25.14
55 21.45 13.41 22.51 25.8 6.79 22.24
50 18.7 11.76 29.5 20.01 22.75 5.86 19.33
45 16.48 10.26 26.2 17.89 20.25 5.09 16.94
40 14.25 8.88 22.9 15.77 17.74 4.32 14.55
35 12.45 7.64 19.78 13.98 15.69 3.69 12.61
30 10.65 6.51 16.65 12.19 13.63 3.05 10.67
25 9.14 5.5 15 10.7 11.94 2.54 9.12
20 7.63 4.59 13.35 9.2 10.25 2.02 7.57
15 6.46 3.78 11.56 7.97 8.88 1.62 6.36
10 5.28 3.07 9.76 6.73 7.51 1.21 5.15
5 4.43 2.43 8.37 5.73 6.4 0.89 4.22
3.57 1.88 6.98 4.73 5.29 0.57 3.29
-5 2.87 1.4 5.85 3.94 4.42 0.33 2.6
-10 2.16 0.98 4.72 3.14 3.54 0.09 1.91
-15 1.64 0.62 3.85 2.53 2.86 -0.18 1.41
-20 1.12 0.32 2.98 1.91 2.18 -0.27 0.9
-25 0.75 0.06 2.35 1.45 1.67 -0.38 0.55
-30 0.37 1.71 0.98 1.15 -0.53 0.19
-35 -0.06 1.22 0.64 0.77 -0.62 -0.24
-40 -0.16 0.73 0.3 0.39 -0.71 -0.28
-45 -0.34 0.25 -0.14 -0.02 -0.44
-50 -0.52 0.08 -0.19 -0.14 -0.59
-55 -0.63 -0.22 -0.35 -0.32 -0.69
-60 -0.74 -0.36 -0.51 -0.5 -0.78
-65 -0.51 -0.62 -0.61 -0.84
-70 -0.65 -0.72 -0.72 -0.89

vteple.xyz

1 Краткое описание

Чтобы кондиционеры и холодильники слаженно работали, а также сохранялся цикл испарения и конденсации, необходимо поддерживать оптимальный уровень давления во всей системе. В охлаждающих агрегатах могут быть использованы совершенно разные виды фреона, которые отличаются между собой не только химическим составом, но и многими другими характеристиками. Но чаще всего производители применяют следующие типы этого вещества:

  • R22.
  • 134A.
  • 407.
  • R-410A.
  • 404A.

Итоговая температура кипения у всех этих видов имеет разные показатели. Опытные мастера прекрасно знают, что перед заправкой того или иного холодильного аппарата необходимо учесть тип охлаждающей жидкости, которая ранее использовалась в работе.

Универсальный фреон R-410A был разработан ещё в 1991 году, а уже через 5 лет в продаже появились первые кондиционеры, в которых использовалась эта жидкость. Таким образом, производители хотели заменить давно устаревшие газовые смеси, которые содержали опасный для человека хлор. Когда происходила утечка этой жидкости и испарения попадали в атмосферу, то изначально страдал озоновый слой, что только усиливало неблагоприятный парниковый эффект. В то время как современный вид фреона полностью соответствует всем требованиям.

Фреон R22 (запрещен к использованию)

22-й — производный метана СН4. В нём два атома водорода заменены фтором и один — хлором. Химическое наименование – дифторхлорметан. Теплофизические параметры — близкие с пропаном. Теплота испарения 1 кг 22-го хладона приблизительно вдвое ниже, чем у пропана, но и плотность пара вдвое выше. Так, что при небольшой перенастройке системы получается паритет.

Он не горюч, не ядовит, не способен поддерживать дыхание. Тяжелее воздуха, поэтому при больших объёмах утечки может заполнить помещение компрессорной и вызвать удушье из-за недостаточного количества кислорода. Опасность ликвидируется простым проветриванием.

Недостаток у нашего хладона заключается в наличии в составе Cl. Он, как оказалось, способствует разрушению озонового слоя в атмосфере Земли. В связи с вновь открывшимся обстоятельством эксплуатация хлорсодержащих хладагентов была запрещена или ограничена. Так 22-й фреон должен быть полностью исключён состава рабочих тел холодильников, чиллеров после 2020 года.

В связи с этими запретами пришлось разрабатывать новые хладагенты, не содержащие хлора и не оказывающие разрушительного воздействия на окружающую среду. Но наряду с очередными разработками необходимо было учитывать огромный парк действующего оборудования. Поэтому, ещё одним требованием, предъявляемым к новым хладонам, была возможность использования в существующих холодильных агрегатах.

Подобрать адекватную однокомпонентную замену 22 фреону не удалось. Решение возникшей задачи было найдено с применением смеси хладагентов.

Характеристики хладагента R22 на линии насыщения

Давл. Плотн. Объем Enthalpy Entropy
Т, °С (МПа) (кг/м3) (м3/кг) (kJ/kg) (kJ/kgK)
Жидк. Пар Жидк. Пар Жидк. Пар
-100 0.00200 1571.7 394677 90.24 358.93 0.5027 2.0545
-90 0.00480 1545.1 1697709 100.95 363.82 0.5629 2951892
-80 0.01035 1518.3 2160776 111.66 368.75 0.6197 2778766
-70 0.02044 1491.1 0.94476 122.36 373.68 0.6738 2633035
-60 0.03747 1463.6 0.53734 133.11 378.58 0.7253 2509218
-50 0.06449 1435.5 0.32405 143.91 383.39 0.7748 2403298
-48 0.07140 1429.8 0.29469 146.08 384.35 0.7844 2383940
-46 0.07890 1424.1 0.26849 148.25 385.29 0.7940 2365312
-44 0.08700 1418.4 0.24507 150.43 386.23 0.8035 2347050
-42 0.09575 1412.6 0.22410 152.61 387.17 0.8130 2329154
-40 b) 0.10132 1409.1 0.21256 153.93 387.72 0.8186 2318927
-40 0.10518 1406.8 0.20526 154.80 388.09 0.8224 2311987
-38 0.11533 1401.0 0.18832 156.99 389.01 0.8317 2295186
-36 0.12623 1395.1 0.17306 159.19 389.93 0.8410 2279115
-34 0.13793 1389.2 0.15927 161.40 390.84 0.8502 2263045
-32 0.15045 1383.3 0.14680 163.61 391.74 0.8594 2247705
-30 0.16384 1377.3 0.13551 165.82 392.63 0.8685 2232730
-28 0.17815 1371.3 0.12525 168.04 393.52 0.8776 2218120
-26 0.19340 1365.2 0.11593 170.27 394.39 0.8866 2203875
-24 0.20965 1359.1 0.10744 172.51 395.26 0.8955 2189996
-22 0.22693 1352.9 0.09970 174.75 396.12 0.9044 2176482
-20 0.24529 1346.8 0.09262 177.00 396.67 0.9133 2162968
-18 0.26477 1340.5 0.08615 179.26 397.81 0.9222 2150185
-16 0.28542 1334.2 0.08023 181.53 398.64 0.9309 2137401
-14 0.30728 1327.9 0.07479 183.81 399.46 0.9397 2125348
-12 0.33040 1321.5 0.06979 186.09 400.27 0.9484 2113296
-10 0.35482 1315.0 0.06520 188.38 401.07 0.9571 2101243
-8 0.38059 1308.5 0.06096 190.69 401.85 0.9657 2089555
-6 0.40775 1301.9 0.05706 193.00 402.63 0.9743 2078232
-4 0.43636 1295.3 0.05345 195.32 403.39 0.9829 2067274
-2 0.46646 1288.6 0.05012 197.66 404.14 0.9915 2056317
0.49811 1281.8 0.04703 200.00 404.87 1.0000 2045360
2 0.53134 1275.0 0.04417 202.35 405.59 1.0085 2034768
4 0.56622 1268.1 0.04152 204.72 406.30 1.0170 2024541
6 0.60279 1261.1 0.03906 207.10 406.99 1.0254 2014314
8 0.64109 1254.0 0.03676 209.49 407.67 1.0338 2004088
10 0.68119 1246.9 0.03463 211.89 408.33 1.0422 1994226
12 0.72314 1239.7 0.03265 214.31 408.97 1.0506 1984365
14 0.76698 1232.4 0.03079 216.74 409.60 1.0590 1974503
16 0.81277 1225.0 0.02906 219.18 410.21 1.0673 1965007
18 0.86056 1217.6 0.02744 221.63 410.80 1.0756 1955511
20 0.91041 1210.0 0.02593 224.10 411.38 1.0840 1946014
22 0.96236 1202.4 0.02451 226.59 411.93 1.0923 1936518
24 1.0165 1194.6 0.02319 229.09 412.46 1.1006 1927387
26 1.0728 1186.8 0.02194 231.60 412.98 1.1088 1917890
28 1.1314 1178.8 0.02077 234.14 413.46 1.1171 1908759
30 8767 1170.7 0.01968 236.69 413.93 1.1254 1899628
32 239967 1162.5 0.01864 239.25 414.37 1.1336 1890132
34 480296 1154.2 0.01767 241.84 414.79 1.1419 1881001
36 729757 1145.7 0.01675 244.44 415.18 1.1501 1871504
38 988348 1137.1 0.01589 247.06 415.54 1.1584 1862374
40 1256802 1128.4 0.01507 249.71 415.87 1.1667 1852878
42 1535116 1119.5 0.01430 252.37 416.17 1.1749 1843381
44 1823293 1110.4 0.01357 255.06 416.44 1.1832 1833885
46 2121696 1101.2 0.01288 257.77 416.68 5480 1824024
48 2430691 1091.8 0.01223 260.51 416.87 35796 1814162
50 2750643 1082.1 0.01161 263.27 417.03 66112 1804300
55 2.1753 1057.1 0.01020 270.31 417.24 142812 1778002
60 867119 1030.5 0.00895 277.56 417.14 220243 1750244
65 1865691 1001.8 0.00784 285.06 416.65 298770 1720294
70 2946444 970.4 0.00684 292.90 415.69 379854 1686692
75 463189 935.3 0.00594 301.18 414.09 463495 1648342
80 1726562 894.8 0.00511 310.10 411.60 552614 1602321
85 4.0368 845.1 0.00433 320.05 407.72 650134 1544247
90 919043 777.5 0.00355 331.98 401.33 766281 1463528
95 2527571 665.4 0.00264 348.86 387.46 928449 1311588
96.14 c) 2922032 523.8 0.00191 366.59 366.59 1102304 1102304

Взаимодействие R134a с другими материалами

Переносимость металлов сравнима с R12. Все обычно применяемые в холодильном машиностроении металлы и сплавы металлов заменимы. Только от цинка, магния, свинца и сплавов алюминия с содержанием магния более 2 % массы необходимо отказаться. Даже попытки хранения с влажным R134a показали хорошую гидролизную устойчивость на металлах, таких как ферритовая сталь, V2A, медь, латунь или алюминий.

Лишь незначительное набухание появляется при воздействии R134a на следующие пластмассы или эластомеры: полиэтилен (PE), полипропилен (PP), поливинилхлорид (PVC), полиамид (PA), поликарбонат (PC), эпоксидная смола, политетрафторэтилен (PTFE), полиацетал (POM), хлорпренкаучук (CR), акрилнитрил-бутадиенкаучук (NBR) и гидрированный акрилнитрил-бутадиенкаучук (HNBR). Необходимо также учитывать возможное влияние смазочного вещества. При отсутствии минерального масла в холодильном цикле могут применяться также типы этилен-пропилен-диен-каучука (EPDM). Типы фторкаучука для R134a не рекомендуются. Гибкие шланговые соединения должны иметь ядро из полиамида.

R134a совместим с рядом уплотняющих материалов, в частости с прокладками, сделанными из таких материалов, как «Буна-Н», «Хайпалон 48», «Неопрен», «Нордел», а также со шлангами, футурованными нейлоном.

Как показал анализ, проведенный фирмой «Du Pont», изменение массы и линейное набухание таких материалов, применяемых в отечественном холодильном оборудовании, как фенопластовые и полиамидные колодки, текстолит, паронит и полиэтилентерефталатовые пленки, при старении в смеси SUVA R134a с полиэфирным маслом «Castrol SW100» при 100°С в течение 2 недель были незначительными.

В качестве материала для сушителя при замене R134a необходимо применять молекулярные сита с диаметром пор 3 ангстрема.

Почему же так выходит?

oцикл холодильной

При понижении температуры кипения до toa (0°С), получаем диаграмму 1а-2а-3-4а, удельная массовая холодопроизводительность, как видно из диаграммы, уменьшается, но не значительно (Qoa = i1a»- i4a).

Это объясняется тем, что при дросселировании, в нашем случае проходя через ТРВ, до более низкого давления рoa (процесс 3 — 4а) хладагент поступает в испаритель с большим содержанием пара (Х4a>Х4). Удельная работа сжатия компрессора с понижением температуры кипения увеличивается (la = i2a-i1a).

При этом уменьшается удельная массовая холодопроизводительность компрессора (q0км = i1 — i4) и повышается температура сжатия паров фреона в компрессоре (t2a> t2).

С понижением температуры и давления кипения значительно увеличивается удельный объем всасываемого пара (V > V1), что приводит к существенному уменьшению удельной объемной холодопроизводительности компрессора qvкм.

Таким образом, с понижением температуры кипения:

  • уменьшается холодопроизводительность машины; снижается ее энергетическая эффективность, так как уменьшается значение холодильного коэффициента COP;
  • ухудшаются рабочие характеристики компрессора, так как с увеличением отношения давлений Рк/Pв и их разности Рк — Ро растет нагрузка на механизм движения и повышается температура сжатия.

Вывод: с понижением температуры кипения (понижением температуры воды) — увеличивается «объем работы компрессора», которую выполняет компрессор, поэтому падает холодопроизводительность (см. график. Добавляется зеленая площадь).

В нашем случае, при понижении температуры кипения на 10°С градусов, холодопроизводительность чиллера снижается с 19 до 12 кВт, т.е. уменьшается на ~35%.

К аналогичным последствиям приводит повышение температуры конденсации и соответственно давления конденсации. Кроме того, увеличивается нагрев компрессора и потребление электроэнергии. Однако, если снижение температуры кипения на 1°С уменьшает холодопроизводительность машины на 3 … 5%, то повышение температуры конденсации на 1°С снижает его всего на 1 … 2% (в зависимости от типа холодильной машины и условий ее работы).

На практике, для корректного подбора чиллера необходимо не только знать требуемую тепловую нагрузку (или массовый расход жидкости и её разность температур на входе и выходе из вашего оборудования), но и требуемую температуру жидкости. Так, например если нам надо отводить 12 кВт тепла при температуре жидкости +5°С, то мы выберем чиллер марки ВМТ-16, а если технология позволяет отводить тоже количества тепла (12 кВт), только при температуре воды +15°С, то мы уже можем взять установку охлаждения жидкости ВМТ-10 (Q=13 кВт, при Тжид=+15°С), что позволит нам разово сэкономить при покупке чиллера ~20…25%, а также постоянно экономить на электроэнергии ~13000 кВт/год.

Признаки утечки фреона

Хладагент фреон в кондиционерах подвержен утечке в процессе эксплуатации. В течение года использования количество фреона уменьшается на 4–7% естественным образом. Однако при неисправной работе кондиционера или повреждениях внутреннего блока, утечка может произойти и в новом устройстве

Её важно определить на начальном этапе и вовремя дозаправить устройство хладагентом

Основные признаки утечки фреона:

  • Плохое охлаждение помещения.
  • Появление инея на деталях внутреннего и внешнего блока.
  • Подтеки масла под кранами.
  • Повышенный шум и вибрации устройства при работе.
  • Появление неприятного запаха при работе кондиционера.

Если утечка произошла в результате длительного использования, работоспособность кондиционера можно восстановить, заправив его хладагентом. При повреждении деталей и фреоновых трубок, по которым движется цикл, потребуется не только дозаправка, но и вмешательство специалистов по ремонту охладителей.

Почему появляются утечки?

Многие владельцы климатической техники интересуются: «как проверить утечку фреона в кондиционере и почему это происходит». Основной причиной утечки хладагента является неправильный монтаж фреоновой магистрали. Все дело в том, что все соединения в трубопроводе производятся методом вальцевания. При отсутствии достаточного опыта у многих монтажников или нарушении технологии вальцевания появляются неплотности в соединениях из которых и происходит утечка, которую сразу заметить практически невозможно.

Определить нехватку газа можно только через несколько месяцев, первым признаком которой является снижение производительности климатической техники. Если после включения кондиционера, на протяжении 5-7 минут из внутреннего блока не стал поступать в квартиру прохладный воздух – это является признаком недостаточного количества газа в системе. Следует немедленно выключить аппарат и пригласить специалиста для диагностики и дозаправки устройства.

Применение R134a

R134a используется как хладагент, пропеллент и вспениватель для получения пенопластов.

В холодильной технике R134a может заменить R12 практически при всех случаях, в бытовых холодильных аппаратах, автомобильных кондиционерах, тепловых насосах, турбоагрегатах холодной воды для кондиционирования помещений, при транспортном охлаждении и производственном охлаждении. Холодильная промышленность создала технические предпосылки для применения. Холодильные машины, конструктивные элементы установок, компоненты предлагаются на широкой основе. Далее возможна переналадка существующих холодильных установок с R12 в особенности новых установок и установок с полугерметичными или открытыми компрессорами, однако только после переделки установки.

Анализ зарубежных публикаций и результаты исследований отечественных специалистов свидетельствуют о том, что замена R12 на R134a, имеющий высокий потенциал глобального потепления GWP, в холодильных компрессорах сопряжена с решением ряда технических задач, основные из которых:

  • улучшение объемных и энергетических характеристик герметичных компрессоров;
  • увеличение химической стойкости эмаль-проводов электродвигателя герметичного компрессора;
  • повышение влагопоглощающей способности фильтров-осушителей из-за высокой гигроскопичности системы R134a — синтетическое масло.

Все это должно привести к значительному увеличению стоимости холодильного оборудования. Вместе с тем в водоохладительных установках с винтовыми и центробежными компрессорами применение R134a имеет определенные перспективы.

Монтаж оборудования на R410a

При установке оборудования на R410A необходимо придерживаться следующих основных рекомендаций (аналогичных для R407C):

  • не допускать попадания загрязнений в гидравлический контур;

  • при пайке трубопроводов они должны быть заполнены инертным или слабовзаимодействующим газом, например, азотом с низким содержанием влаги;

  • особенно тщательно производить вакуумирование;

  • дозаправку хладагента осуществлять исключительно в жидкой фазе.

Приведем несколько рекомендаций по выполнению вакуумирования, направленного на полное удаление из контура воздуха и влаги. Для того чтобы перевести воду из жидкого в газообразное состояние без нагревания, потребуется уменьшить давление в контуре. Чем ниже температура контура (наружного воздуха), тем меньше давление, при котором начнется испарение воды.

Давление испарения воды при различных температурах воздуха:

Температура, °C Давление, Мбар
15 9
10 12
15 17
20 23
25 42

Следовательно, при вакуумировании остаточное давление в контуре должно быть таким, чтобы температура испарения для этого давления была ниже температуры наружного воздуха

Особое внимание следует уделить выбору инструмента. Вакуумный насос может быть как одно-, так и двухступенчатым, но производительность его должна быть не ниже 4–8 м3/ч для систем холодопроизводительностью до 11 кВт и 8–15 м3/ч для более мощных систем

Преимущество двухступенчатых насосов заключается в возможности достижения более низкого остаточного давления. Для предотвращения попадания минерального масла из насоса в контур холодильной установки он должен быть оснащен специальным клапаном. Манометрический коллектор должен быть предназначен для R410A, т.е. иметь шкалу давление/температура соответствующую этому хладагенту, а также увеличенные диаметры портов для подключения гибких шлангов (ввиду существенных различий термодинамических характеристик R410A и R22, R407C).

Очень важно, что измерение глубины вакуума с помощью манометра низкого давления (до 17 бар) на манометрическом коллекторе недопустимо, поскольку не обеспечивает достаточной точности. Необходим специальный манометр для измерения вакуума, только с его помощью можно правильно измерить остаточное давление и убедиться в отсутствии влаги в контуре

В целом, если вы следуете этим несложным рекомендациям и работаете профессиональным инструментом, применяя его по назначению, то установка и сервисное обслуживание оборудования на R410A не вызовут сложностей, а пользователи смогут оценить надежность и высокую энергетическую эффективность новых систем кондиционирования.

Про R22 коротко

Хладагент R22 (CHClF2, дифторхлорметан, хлордифторметан) – однокомпонентный газ. Растворяется в минеральных компрессорных маслах, нейтрален к металлам. По сравнению с хладагентом R12, легче проникает через микротрещины. Этот газ плохо растворяется в воде, поэтому ее объемная доля должна быть <0,0025%.

При температуре >330°С газ разлагается на те же составляющие, что R12. Но у этих хладагентов разные физические свойства. Для конденсации R-22 необходимо большее давление, чем для R12. Но при испарении и конденсации он на 25-30% эффективнее. Эти показатели компенсируют друг друга.

Свое применение фреон R22 нашел в холодильной технике, кондиционерах, тепловых насосах и т.д. Благодаря хорошим характеристикам хладагент R22 получил широкое распространение. Но в последние годы все больше стран сокращают потребление всех ГХФУ (гидрохлорфторуглеродов).

История происхождения

В 1989 году был подписан Монреальский протокол по веществам, разрушающим озоновый слой. Под него попадали такие хладагенты как R22 и R13B, как озоноразрушающие (из-за присутствия в их составе хлора). Для их замены был разработан новый фреон R-410A.

Изначально его использовали для замены устаревших хладагентов (если позволяли характеристики систем). Впоследствии было разработано оборудование, которое могло работать на хладагенте r410a, но не на r22 или r13b. Оно отличалось компактностью и низким энергопотреблением.

За счет этого новые модели стали пользоваться популярностью, хоть и были несколько дороже. Когда производители хладагентов снизили стоимость нового вида фреона, на него перешли изготовители бытовой и коммерческой холодильной и кондиционерной техники. Сейчас хладагент в некоторых сферах используется чаще аналогов, таких как r134a, r404a, r600a, r407c и r507.

После разработки хладагента, многие производители начали патентовать собственные торговые марки. Сейчас полноценными аналогами R410a являются:

  • SUVA 9100;
  • AZ 20;
  • Forane 410a;
  • Solkane 410.

Торговая марка Genetron AZ 20 — полный аналог R410a

Хладагент R-410A (Фреон 410А)

Хладагент | Хладон | Фреон | R410a ASHRAE имя серии : R410a (50% HFC-32/50% HFC-125) Смесь для замены HCFC.Хладагент | Хладон | Фреон | R410a. Представляет собой двойную азеотропную смесь гидрофторуглеродов R32 и R125 при равных массовых долях компонентов (50 и 50 %). Потенциал разрушения озона ODP = 0. Потенциал глобального потепления HGWP = 0,45. Он служит хладагентом, альтернативным R22, и предназначен для заправки новых систем кондиционирования воздуха высокого давления. Удельная холодопроизводительность R-410A примерно на 50 % больше, чем у R22 (при температуре конденсации 54 oС), а рабочее давление в цикле на 35…45 % выше, чем у R22, что приводит к необходимости внесения конструктивных изменений в компрессор и теплообменники, а следовательно, к возрастанию капитальных затрат. Физические свойства хладагента R-410A приведены в таблице ниже. Поскольку плотность R-410A выше, чем R22, компрессоры, коммуникационные линии и теплобменники должны иметь меньшие размеры. В холодильных системах, работающих на R-410A, рекомендуется использовать полиэфирные масла.Упаковка: Одноразовый стальной контейнер в картонной упаковке. — Допустимый заменитель для Класса II (HCFCs) веществ в системах воздушного кондиционирования и охлаждения, согласно программе о политике существенных новых альтернативах (SNAP), которая была утверждена 18 декабря 2000 года. Используется как: a) заменитель для HCFC в домашних и коммерческих легких AC (N) b) заменитель для HCFC при комфортном воздушном коммерческом кондиционировании (N) c) заменитель для HCFC в промышленных холодильных процессах (N) d) заменитель для HCFC при промышленных процессах воздушного кондиционирования (N) f) заменитель для HCFC в системах холодильных складов (N) g) заменитель для HCFC на ледяных катках (N) i) заменитель для HCFC при перевозке с охлаждением (N) j) заменитель для HCFC в торговых пищевых холодильных автоматах (N) k) заменитель для HCFC в холодильных автоматах (N) l) заменитель для HCFC в домашних холодильниках и других холодильных приборах (N) (R) = налаженное использование (N) = новое использование Аналоги : SUVA 9100, AZ 20, Forane 410a, Solkane 410

Физические свойства:

Свойства
Молекулярная масса, г/моль 72,58
Температура кипения при 1,0325-105Па, С -51,58
Температура замерзания, С
Критическая температура, С 72,1
Критическое давление, 105Па 49,2
Критическая плотность, кг/м3 488,9
Плотность жидкости при 25 С, кг/м3 1062
Теплота парообразования при температуре кипения, кДж/кг 264,3
Плотность насыщенного пара при -25 С, кг/м3 18,5
Давление пара при 25 С, 105 Па 1,653
Предельная воспламеняемость в воздухе, % объема Нет
Температура самовоспламенения, С
Потенциал разрушения озона ODP
Потенциал глобального потепления HGPW 0,45
Потенциал глобального потепления за 100 лет GWP 1890

Предельно допустимая концентрация на рабочем месте, ppm

1000

Физические свойства озонобезопасного фреона

В связи с опасностью разрушения озонового слоя атмосферы фреонами вначале были полностью запрещен фреон R12 и его модификации, а сейчас на грани подобного запрета находится R22. Новые озонобезопасные фреоны представляют собой многокомпонентные смеси из нескольких фреонов.

Наиболее распространенными являются R407 и R-410A. Первый из них создавался под физические характеристики R22 для того чтобы выдержать в системе показатели давления, однако разная температура испарения отдельных компонентов привела к тому, что естественные потери фреона стало невозможно восполнить дозаправкой. Поэтому при потере критического объема этот фреон в системе приходится полностью менять.

У фреона R-410A испарение компонентов равномерное, но температура кипения практически вдвое выше, поэтому рабочее давление агрегата с ним увеличилось до 28 атмосфер. Прямая зависимость давления от температуры фреона означает, что его нельзя использовать в кондиционерах, рассчитанных на R22, а в новых моделях приходится увеличивать мощность компрессора и использовать более прочные, а значит дорогие, материалы для изготовления системы охлаждения.

Зависимость давления от температуры фреона (увеличить картинку)

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации