Андрей Смирнов
Время чтения: ~12 мин.
Просмотров: 0

Гост р 55913-2013 здания и сооружения. номенклатура климатических параметров для расчета тепловой мощности системы отопления

Расчетная температура для вентиляции

Такие инженерные системы в многоквартирных домах монтируются в обязательном порядке. Предусматривают вентиляционные сети и во многих загородных жилых зданиях

При проектировании таких систем также, как уже упоминалось, принимается во внимание расчетная зимняя температура наружного воздуха. С использованием этого показателя в последующем вычисляется оптимальная мощность вентиляционного оборудования

В данном случае проектирование выполняется с применением примерно тех же правил, что и для систем отопления. То есть чаще всего:

для легких ограждений принимается во внимание минимальная температура самого холодного месяца; для стен малой массивности — средняя наружная температура наиболее холодных дней; для ограждений средней массивности — среднее арифметическое между показаниями t° наиболее холодных суток и самой морозной пятидневки; для массивных стен — температура пятидневки

Определения

Сначала разберемся с терминологией.

Отопительным периодом именуется время функционирования центрального отопления. Оно запускается, в то время, когда средняя температура уличного воздуха за последние пять дней удерживается на отметке +8 С либо ниже. В то время, когда весной средняя температура за пятидневку превышает +8 — сезон заканчивается.

  • Градусо-день — условное понятие, соответствующее разнице между температурами в отапливаемом помещении и на улице в один градус течение дней. Оно употребляется в качестве меры тепла в коммунальном хозяйстве. Затраты тепла определяются не полным значением температур, в частности их дельтой: для поддержания в помещении +30 при 0 С за окном необходимо израсходовать столько же тепла, сколько для поддержания +15 при -15 на улице.
  • Наконец, градусосутки отопительного периода (ГСОП) показывают на дельту температур между улицей и помещением в течении всего сезона.

Для чего это необходимо

Итак, мы обучились рассчитывать некоторый параметр. И что делать с взятым значением? Самая очевидная область его применения — оценка предполагаемых затрат на отопление. Но ГСОП воздействует еще на одну вещь — уровень качества утепления зданий.

Чем холоднее зима, тем более большие требования СНиП 23-02-2003 «Тепловая защита зданий» предъявляет к данной самой защите.

Чтобы сделать зависимость более наглядной, стоит упомянуть одно смежное понятие — сопротивление теплопередаче, нормирующееся упомянутым СНиП. Оно измеряется в м2хC/Вт: чем меньше ватт тепловой энергии переносится через квадратный метр стенки при разнице температур на ее сторонах в 1 градус, тем лучше она сопротивляется утечкам тепла.

Вот кое-какие нормированные сопротивления теплопередаче для регионов с различным ГСОП.

  • Для ГСОП 2000 (Ставрополь, Астраханская область) минимум теплового сопротивления стен — 2,1 м2*С/Вт.
  • Для ГСОП 4000 (Волгоградская и Белгородская области) — 2,8.
  • ГСОП 6000 (Столичная и Ленинградская области) — 3,5.
  • ГСОП 8000 (Магадан) — 4,2.
  • ГСОП 10000 (Чукотка) — 4,9.
  • ГСОП 12000 (Кое-какие районы Якутии, а также упомянутый нами Верхоянск) — 5,6.

Расчетная температура для холодильных установок

При проектировании такого оборудования инженеры принимают во внимание в первую очередь такие показатели, как время обработки и коэффициент запаса. Также при расчете холодильных установок, как и систем отопления, учитывается расчетная температура наружного воздуха

Однако в данном случае во внимание принимаются, конечно же, показатели не самых низких t° в году, а самых высоких.

К сожалению, у нас в стране на данный момент практически не имеется справочной литературы, в которой были бы указаны показатели расчетных наружных температур для холодильных установок в той или иной местности. Однако программы с базами самых высоких t° для разных городов можно встретить в интернете. Единственное — инженеру, которому понадобились подобные сведения, вряд ли удастся проверить первоисточники и достоверность информации в таких списках.

Интересный факт

Разного рода нормативы, регулирующие проектирование инженерных систем, разрабатывались у нас в стране еще в советские времена. И конечно же, на данный момент многие такие документы могут считаться уже даже и устаревшими. Сегодня строительные компании, разработанные в советские времена, правила зачастую по некоторым пунктам не соблюдают. Однако в большинстве случаев это никак не сказывается на комфорте проживания и работы в зданиях людей.

К примеру, в наше время за расчетную наружную температуру проектные компании принимают обычно самую холодную пятидневку за 8 самых морозных зим последних не 50, а не более 20 лет. Дополнительно такие фирмы могут закладывать в проекты коммуникаций разного рода автоматику, включающую/выключающую оборудование по мере необходимости. К примеру, вентиляция в современных зданиях может функционировать только тогда, когда в них находятся люди.

Нормативы температур для жилых помещений

Проектировать систему отопления, в том числе и с учетом наружной температуры, следует таким образом, чтобы в помещениях разного назначения в доме или квартире в последующем создавался микроклимат, соответствующий действующему законодательству. Для жилых зданий у нас в стране в этом плане предусматриваются следующие нормативы:

  • жилые комнаты — температура зимой не ниже +18 °С;

  • угловые жилые комнаты — +20 °С;

  • ванные комнаты — +25 °С.

При этом если расчетная наружная температура воздуха в данной конкретной местности ниже -31 °С, для жилых обычных и угловых помещений показатели увеличиваются до +20 и +22 °С соответственно.

РАСЧЕТ.

Расчет начинаем с тёплого периода года ТП, так как воздухообмен при этом получается максимальным.

Последовательность расчета (см. Рисунок 1):

1. На J-d диаграмму наносим (•)  Н — с параметрами наружного воздуха:

tН„А“ = 22,3 °C;   JН„А“ = 49,4 кДж/кг

и определяем недостающий параметр — абсолютную влажность или влагосодержание dН„А“.

Точка наружного воздуха — (•) Н будет являться и точкой притока — (•) П.

2. Наносим линию постоянной температуры внутреннего воздуха — изотерму tВ

tВ = tН„А“  3 = 25,5 °C.

3. Определяем тепловое напряжение помещения:

где: V — объём помещения, м3.

4. Исходя из величины теплового напряжения помещения, находим градиент повышения температуры по высоте.

Градиент температуры воздуха по высоте помещений общественных и гражданских зданий.

Тепловая напряженность помещения Qя / Vпом.grad t, °C / м
кДж / м3Вт / м3
Более 80Более 230,8 ÷ 1,5
40 ÷ 8010 ÷ 230,3 ÷ 1,2
Менее 40Менее 100 ÷ 0,5

и рассчитываем температуру воздуха, удаляемого из верхней зоны помещения

ty=tB + grad t(H-hp.з.), ºС

где: Н — высота помещения, м;hр.з. —  высота рабочей зоны, м.

На J-d диаграмму наносим изотерму уходящего воздуха ty*.

Внимание! При кратности воздухообмена более 5, принимается ty=tB. 5

Определяем численное значение величины тепло-влажностного отношения:

5. Определяем численное значение величины тепло-влажностного отношения:

(численное значение величины тепло-влажностного отношения примем 6 200).

На J-d диаграмме через точку 0 на шкале температур проводим линию тепло-влажностного отношения с численным значением 6 200 и проводим луч процесса через точку наружного воздуха — (•)H параллельный линии тепло-влажностного отношения.

Луч процесса пересечёт линии изотерм внутреннего и уходящего воздуха в точке В и в точке У.

Из точки У проводим линию постоянной энтальпии и постоянного влагосодержания.

6. По формулам определяем воздухообмен по полному теплу

и по влагосодержанию

Полученные численные значения должны совпадать с точностью ±5%.

7. Вычисляем нормативное количество воздуха, требуемое для людей находящихся в помещении.

Минимальная подача наружного воздуха в помещения.

Род зданийПомещенияПриточные системы
с естественным проветриваниембез естественного проветривания
Подача воздуха
Производственныена 1 чел., м3/чна 1 чел., м3/чКратность воздухообмена, ч-1% от общего воздухообмена не менее
30*; 20**60≥1Без рециркуляции или с рециркуляцией при кратности 10 ч-1 и более
60
90
120
20
15
10
С рециркуляцией при кратности менее 10 ч-1
Общественные и административно-бытовыеПо требованиям соответствующих глав СНиПов60
20***
Жилые3 м3/ч на 1 м2

Примечание. * При объеме помещения на 1 чел. менее 20 м3

3

Справочные значения

Да, инструкция по расчету несложна; но для ее исполнения нам не достаточно некоторых справочных данных. Поспешим восполнить недостачу. (См. кроме этого статью Расчет отопления: изюминки.)

Температура в помещении

Ее рекомендованные значения несложно отыскать в действующих СНиП.

ПомещениеНорма температуры, С
Жилая помещение в регионах с нижней границей зимней температуры выше -31 С+18
То же, для угловых и торцевых помещений+20
Жилая помещение в регионах с нижней границей зимней температуры ниже -31+20
То же, для угловых и торцевых помещений+22

Температура на улице и длительность сезона

Для удобства читателя предоставим в его распоряжение статистику за 1966 — 1980 годы по некоторым городам России. Ясно, что для ближайших к ним населенных пунктов значения будут родными к приведенным.

ГородДлительность отопительного сезонаСредняя температура отопительного сезона
Абакан225-8,4
Анадырь311-10,5
Архангельск253-4,4
Барнаул221-7,7
Белгород191-1,9
Биробиджан219-10,4
Бодайбо254-13,9
Брянск205-2,3
Великий Новгород221-2,3
Верхоянск279-24,1
Владивосток196-3,9
Волгоград177-2,4
Воронеж196-3,1
Дербент138+3,7
Екатеринбург230-6
Зея238-13,8
Ижевск222-5,6
Иркутск240-8,5
Калининград1931,1
Кемерово231-8,3
Комсомольск-на-Амуре223-10,8
Красноярск234-7,1
Махачкала148+2,7
Москва214-3,1
Новосибирск230-8,7
Оймякон286-24,3
Омск221-8,4
Пермь229-5,9
Ростов-на-Дону171-0,6
Петербург220-1,8
Советская Гавань243-6
Таганрог167-0,4
Тында258-14,7
Хабаровск211-9,3
Челябинск218-6,5
Якутск256-20,6

Расчетная температура

Расчетная температура зависит — от условий обогрева и охлаждения рабочей поверхности. Для необогреваемых элементов расчетная температура принимается равной температуре рабочей среды: для бара — бана — температура насыщения при давлении в нем; в коллекторах поверхностей нагрева и соединяющих трубопроводах — температура протекающей через них рабочей среды.

Расчетная температура определяется на основании тепловых расчетов или результатов испытаний. При положительных температурах среды за расчетную температуру принимается наибольшее значение температуры стенки. При отрицательных температурах за расчетную температуру принимается температура 20 С. Если тепловые расчеты или измерения невозможны и если во время эксплуатации температура стенки повышается до температуры рабочей среды, за расчетную температуру принимается наибольшая температура среды. Во всех случаях расчетная температура не может быть ниже 20 С.

Расчетные температуры принимают в соответствии с данными климатического справочника.

Расчетные температуры в рабочей зоне торгового зала берутся по данным СН 87 — 60, однако с некоторыми оговорками. В холодный период при наружной температуре до 10 С внутренняя температура должна быть не более 20 С. На основании сказанного расчетная температура в летний период должна быть не более чем на 3 С выше наружной расчетной температуры по параметрам А. При этом в торговом зале будут соблюдаться условия комфорта, аналогичные производственным цехам, с незначительными избытками явного тепла. При температуре в рабочей зоне выше 28 С необходимо охлаждать подаваемый воздух, например путем промывки его рецир-кулирующей водой.

Расчетная температура cti — нки сосуда, работающего под давлением — — наибольшая температура стенки ( положительная или отрицательная) сосудч при работе, определяемая тепловым расчетом в: ыние п ослн от температуры среды и условии ooospeBa или охлаждения.

Расчетная температура — наибольшая температура стенки ( положительная или отрицательная) аппарата при работе. Чаще всего ее принимают равной максимально возможной температуре среды при эксплуатации аппарата.

Расчетная температура для отопления принята равной средней температуре наружного воздуха наиболее холодной пятидневки.

Расчетная температура для вентиляции принята равной средней температуре наружного воздуха наиболее холодного периода.

Расчетные температуры в производственных помещениях устанавливаются на основе данных гигиенических исследований, а также требований технологического процесса и приводятся в нормативных документах.

Расчетные температуры для проектирования вентиляции и отопления принимаются по СНиП П — А.

Расчетная температура используется для определения физико-механических характеристик материала и допускаемых напряжений. За расчетную температуру стенки сосуда или аппарата принимают наибольшее значение температуры стенки. При температуре ниже 20 С за расчетную принимают температуру 20 С.

Расчетная температура t — 5 C; пол и стены этой камеры находятся в грунте.

Расчетная температура свободных ( накидных) фланцев принимается равной 97 % от температуры рабочей среды.

Расчетная температура определяется на основании тепловых расчетов или результатов испытаний. При положительных температурах за расчетную температуру стенки аппарата принимают наибольшее значение температуры стенки. При отрицательной температуре стенки элемента сосуда или аппарата за расчетную температуру при определении допускаемых напряжений следует принимать температуру 20 С.

Расчетная температура ( О, t, C) определяется как полусумма температур входа и выхода из поверхности нагрева.

В конечном итоге мы получили две величины воздухообменов: по ТП и ХП.

Вопрос — как быть?

Варианты решения:

1. Приточную систему рассчитывать на максимальный воздухообмен и установить на электродвигателе вентилятора регулятор частоты вращения, задействованный от температуры внутреннего воздуха. Вытяжную систему выполнить либо с естественной циркуляцией, либо механическую, задействованную от того же регулятора частоты вращения.

Система эффективная, но очень дорогая!

2. Выполнить две приточные установки и две вытяжные установки. Одна приточная и одна вытяжная установка работают в ХП. Приточная система с воздухонагревателем, который рассчитан на подогрев наружного воздуха от параметров “Б” до температуры притока. Вторая пара систем — приточная установка без калорифера, работает только ТП.

3. Выполнить только приточную систему на подачу по ХП и одну вытяжную систему такой же подачи, а воздухообмен в ТП осуществить через открытые окна.

Пример.

В административном здании — помещение атриума, с габаритными размерами в плане:

9 × 20,1 м

и высотой — 6 м

необходимо поддерживать температуру воздуха в рабочей зоне (h = 2 м)

tВ = 23ºС и относительную влажность φВ = 60%.

Приточный воздух подаётся с температурой tП = 18ºС.

Полные тепловыделения в помещении составляют

∑Qполн. = 44 кВт,

явные тепловыделения равны ∑ Qявн. = 26 кВт,

поступление влаги равны ∑ W = 32 кг/ч.

Решение (см. рисунок 3).

Для определения величины углового коэффициента необходимо привести все параметры согласно J — d диаграмме.

∑ Qполн. = 44 кВт × 3600 = 158400 кДж/кг.

Исходя из этого, угловой коэффициент равен

Определяем тепловое напряжение помещения

Градиент температуры воздуха по высоте помещения составит (определяем по таблице)

grad t = 1,5ºС.

Тогда, температура уходящего воздуха равна

tУ = tВ + grad t( H — hр.з.) = 23 + 1,5 ( 6 — 2 ) = 29  ºС.

На J — d диаграмме находим точку В с параметрами внутреннего воздуха (•) В:

tВ = 23ºС;    φВ = 60%.

Проводим линию тепло-влажностного отношения с численным значением 4950 через точку 0 шкалы температур и, параллельно этой линии проводим наш луч процесса через точку внутреннего воздуха — (•) В.

Так как, температура приточного воздуха tП = 18ºС, то точка притока П будет определяться, как пересечение луча процесса и изотермы tП = 18ºС.

Точка уходящего воздуха У лежит на пересечении луча процесса и изотермы tУ = 29 ºС.

Получаем параметры реперных точек:

В tВ = 23ºС;    φВ = 60%;   dВ = 10,51 г/кг;    JВ = 49,84 кДж/кг;

П tП = 18ºС;    dП = 8,4 г/кг;    JП = 39,37 кДж/кг;

У tУ = 29ºС;    dУ = 13,13 г/кг;    JУ = 62,57 кДж/кг.

Определяем расход приточного воздуха:

по теплосодержанию

по влагосодержанию

т.е. мы получим практически одинаковый расход приточного воздуха.

Определяем кратность воздухообмена по притоку

Таким образом, кратность воздухообмена по притоку составляет менее 5.

Так как, кратность воздухообмена по притоку составляет больше 5, то необходимо выполнить расчет из условия, что уходящую температуру внутреннего воздуха tУ необходимо принимать равной внутренней температуре воздуха в помещении tВ, т.е.

tУ = tВ

и формула для определения количества воздуха приняла бы вид:

по теплосодержанию

по влагосодержанию

Принципиальную схему приточной вентиляционной установки смотри рисунок 4.

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации