Андрей Смирнов
Время чтения: ~21 мин.
Просмотров: 1

Гост 2590-2006 прокат сортовой стальной горячекатаный круглый. сортамент

Классификация стальных профилей круглого поперечного сечения

Рассматриваемый прокат различают по следующим параметрам:

  1. По технологии производства. Данные изделия можно получать прокаткой на станах (в горячем и холодном состоянии), волочением на круглых оправках, прессованием через круглые фильеры, а также свёрткой из металлических лент или полос с последующей электрической или газопламенной сваркой. Соответственно говорят о катаных, тянутых, прессованных и сварных трубах.
  2. По размерам поперечного сечения – с постоянным или переменным (раструбные соединения) сечением.
  3. По исходным материалам.
  4. По точности размеров.

Катаные стальные трубы

Наибольшей прочностью обладают бесшовные трубы. Их, в свою очередь, можно подразделить на:

  • Горячекатаные бесшовные.
  • Холоднотянутые (горячее волочение в современном металлургическом производстве не применяется).
  • Горяче- и холоднопрессованные.
  • Прецизионные стальные особо высокой точности.

Процесс холодного волочения трубного прокатаСварные стальные трубы

Трубы стальные бесшовные показывают хорошую работоспособность в напорных трубопроводах и газопроводах магистральных линий.

Раструбные соединения

Сварные стальные трубы технологически проще в производстве, и требуют для изготовления меньших энергозатрат.

Они различаются:

  • Способом сварки (пламенная, электрическая, сварка сопротивлением).
  • Направлением относительного перемещения сварочной головки (только применительно к электросварным заготовкам!) – по прямой или по спирали.

Электросварка круглого профиляГазопламенная сварка труб

Сваренная стальная труба формируется путем сварки стальной пластины, свёрнутой в трубчатую форму при помощи шва, который проходит вдоль всего изделия. Такие профили находят применение в магистральных водопроводах среднего давления, во внутренних газопроводах, системах отопления и кондиционирования, а также в качестве корпуса при прокладке электрических сетей.

Для трубного стального проката отечественного производства действуют следующие стандарты:

  • ГОСТ 8732-78, который устанавливает технические требования к бесшовным трубам горячего деформирования.
  • ГОСТ 10705-91, касающийся электросварных прямошовных труб.
  • ГОСТ 3262-75, определяющий сортамент и технические требования к стальным круглым трубам, предназначенным для монтажа водопроводных сетей.
  • ГОСТ 10704-91, нормы которого распространяются на тонкостенный трубный прокат (см. рис. 8).
  • ГОСТ 20295-85, где представлены типоразмеры круглых труб для магистральных трубопроводов.

Прямошовные трубыТонкостенные стальные трубы

Некоторые из специальных видов профилей, в частности, бурильные или нержавеющие трубы, производятся по отраслевым стандартам и ТУ. Отечественный сортамент круглых стальных труб – метрический, сортамент зарубежных – часто дюймовый.

ГОСТ 12336-66

Данный нормативный документ был разработан для регламентирования профильных труб замкнутого типа, которые имеют квадратное или же прямоугольное сечение. Стоит заметить, что действие этого ГОСТа было отменено еще в начале 1981-го года (вместо него начали использовать ТУ 14-2-361-79), однако ключевые положения документа по-прежнему актуальны даже сегодня. Поэтому прилагаем соответствующие таблицы.

Таблица № 15. Прямоугольные трубы по ГОСТ 12336-66.

    h b s r1 A Iy Wy iy Sy Iz Wz iz
    мм мм мм мм см2 см4 см3 мм см3 см4 см3 мм
63x32x2 63.000 32.000 2.000 4.000 3.470 17.100 5.420 22.200 3.420 5.980 3.740 13.100
63x32x2.5 63.000 32.000 2.500 5.000 4.230 20.100 6.390 21.800 4.100 7.020 4.390 13.000
63x45x2.5 63.000 45.000 2.500 5.000 4.880 26.100 8.280 23.100 5.080 15.570 6.920 17.900
63x45x3 63.000 45.000 3.000 6.000 5.730 29.800 9.460 22.800 5.880 17.700 7.890 17.600
70x36x2 70.000 36.000 2.000 4.000 3.910 24.100 6.900 24.900 4.330 8.650 4.800 14.900
70x36x2.5 70.000 36.000 2.500 5.000 4.780 28.700 8.200 24.500 5.210 10.200 5.680 14.600
70x50x2.5 70.000 50.000 2.500 5.000 5.480 36.700 10.500 25.900 6.390 21.900 8.760 20.000
70x50x3 70.000 50.000 3.000 6.000 6.450 42.100 12.000 25.500 7.420 25.100 10.000 19.700
80x40x2.5 80.000 40.000 2.500 5.000 5.480 43.400 10.800 28.100 6.850 14.800 7.410 16.400
80x40x3 80.000 40.000 3.000 6.000 6.450 49.700 12.400 27.800 7.960 16.900 8.460 16.200
80x56x3 80.000 56.000 3.000 6.000 7.410 64.000 16.000 29.400 9.810 37.000 13.200 22.300

Таблица № 16. Квадратные трубы по ГОСТ 12336-66.

  b s r1 A Iy=Iz Wy=Wz iy=iz Sy=Sz P
  мм мм мм см2 см4 см3 мм см3 кг/м
63×3 63.000 3.000 6.000 6.810 39.500 12.550 24.100 7.500 5.350
63×4 63.000 4.000 8.000 8.750 48.300 15.340 23.500 9.380 6.870
63×5 63.000 5.000 10.000 10.500 55.100 17.500 22.900 11.000 8.260
70×3 70.000 3.000 6.000 7.650 55.600 15.900 27.000 9.430 6.010
70×4 70.000 4.000 8.000 9.870 68.700 19.600 26.400 11.900 7.750
70×5 70.000 5.000 10.000 11.900 79.200 22.600 25.800 14.000 9.360
80×3 80.000 3.000 6.000 8.850 85.300 21.300 31.000 12.600 6.950
80×4 80.000 4.000 8.000 11.500 100.700 26.600 30.500 16.000 9.010
80×5 80.000 5.000 10.000 13.900 124.000 31.100 29.900 19.000 10.900
80×6 80.000 6.000 12.000 16.200 139.000 34.800 29.300 21.600 12.700
90×3 90.000 3.000 6.000 10.100 124.000 27.600 35.100 16.200 7.890
90×4 90.000 4.000 8.000 13.100 156.000 34.700 34.600 20.700 10.300
90×5 90.000 5.000 10.000 15.900 184.000 40.900 34.000 24.700 2.500
90×6 90.000 6.000 12.000 18.600 208.000 46.100 33.400 28.400 14.600
100×3 100.000 3.000 6.000 11.300 173.000 34.600 39.200 20.200 8.830
100×4 100.000 4.000 8.000 14.700 219.000 43.900 38.700 26.000 11.500
100×5 100.000 5.000 10.000 17.900 260.000 52.000 38.100 31.200 14.100
100×6 100.000 6.000 12.000 21.000 296.000 59.100 37.500 36.000 16.500
100×7 100.000 7.000 14.000 23.900 326.000 65.200 36.900 40.300 18.800
110×3 110.000 3.000 6.000 12.500 234.000 42.500 43.300 24.700 9.780

Подробнее о стандартизации

Стандартизация металлических элементов инженерных систем начала зарождаться в то время, когда активно стали появляться пластиковые трубы. Актуальность стандартизации заключалась и заключается в том, что она дает возможность без особых проблем объединять в рамках одной системы трубы из различных материалов. А это, в свою очередь, значительно расширяет возможности и полезные свойства инженерных систем.

Кроме того, имея информацию о наружном диаметре труб, специалисты-проектировщики могут достаточно оперативно определять, какие соединительные элементы необходимы и в каком количестве.

Речь идет о таких элементах, как:

  • отводы;
  • тройники;
  • заглушки;
  • запорные элементы систем.

Области применения

Сортамент, предлагаемый изготовителями как общедоступный, подразделяется по назначению к применению на 6 классов:

  1. Обычный прокат для ограждений, опор, отводных линий водоснабжения.
  2. Прокат из углеродистых сталей предназначенный для сетевых и магистральных трубопроводов.
  3. Прокат, применяемый для устройства систем, работающих под большим давлением.
  4. Изделия для нефтяной и газовой промышленности. Это обсадные колонны, бурильные трубы. Изделия марки «К» из стали 37Г2С выдерживают внутреннее давление до 400 атм, применяются при гидроразрыве пластов.
  5. Прокат для изготовления высокопрочных конструкций.
  6. Изготавливаются детали колец, цилиндров, ответственных узлов механизмов.

Горячедеформированные изделия выпускают и нержавеющими из низколегированной стали

Горячедеформированные бесшовные трубы, не смотря на высокую стоимость, находят применение во многих отраслях промышленности, где требуется максимальная прочность изготавливаемых конструкций, работа под давлением или агрессивной среде.

Технологии прокатки

Изделия различных диаметров, изготавливаемые из стали, бывают двух видов:

  1. Бесшовные.
  • горячекатаные (из заготовки, нагретой до определённой температуры).
  • холоднокатаные (из охлаждённой заготовки).
  1. Сварные.
  • прямошовные.
  • спиральношовные.

Применяя различные технологии, можно катать стальные трубы любого назначения:

  • круглые — для газотранспортных систем, хранения и перегонки жидкостей (водоснабжение и канализация);
  • профилированные (квадратные, прямоугольные) – для монтажа металлоконструкций.

Бесшовную продукцию катают из круглой заготовки, сварные – из листового проката.

Современное прокатное производство

Сортамент стального проката чрезвычайно широк.  Различия технологических процессов позволяют производить различные типоразмеры изделий одним или несколькими способами. Для каждого способа разработаны один или несколько государственных стандартов, которые содержат требования по физическому и химическому составу, геометрическим размерам и отклонениям, весу и назначению. Рассмотрим некоторые особенности популярных способов производства стальных готовых изделий.

При стандартизации производства продукции используется несколько различных видов диаметров:

  1. Условный – Ду.
  2. Номинальный – Дн.
  3. Наружный.
  4. Внутренний.

Из-за широты сортамента выпускаемой продукции возникла необходимость привести к соответствию стандарты по готовым изделиям из разных материалов – катаной стали и полимеров. Основным нормативом при этом является таблица диаметров.

Усл.проход, мм Диаметр резьбы, ‘’ Наружный диаметр, мм
Стальная Полимерная
Шовная Бесшовная
10 3/8 17 16 16
15 ½ 21,3 20 20
20 ¾ 26,8 26 25
25 1 33,5 32 32
32 1 ¼ 42.3 42 40
40 1 ½ 48 45 50
50 2 60 57 63
65 2 ½ 75,5 76 75
80 3 88,5 89 90
90 3 ½ 101,3 102 110
100 4 114 108 125
125 5 140 133 140
150 6 165 159 160

Перевод размеров необходим в том случае, когда монтируются комбинированные системы, в которых применяются трубы из стали и пластика.

Методы сварки прямошовных труб

Трубная продукция, изготавливаемая по методике сгибания листа (полосы) стали в круг и соединения ее стыков, сваривается по нескольким разным технологиям.

Печная сварка

Поступающая на прокатный стан для придания ей круглой формы стальная полоса (штрипс) предварительно прогревается в туннельной печи до температуры около 1300 °С. Подходя к прокатным роликам, боковые сопла горячим воздухом дополнительно нагревают кромки трубы до температуры около 1400 °С. Аналогичные сопла установлены в зоне валков формовочного стана и нагревают края полосы до 1400 °С перед непосредственным сгибанием листа в круг с контактом крайних кромок.

После соединения кромок, нагретых до высокой температуры под давлением валками, образуется прочный шов, полученный методом взаимной диффузии расплавленных металлов. Далее труба еще раз протягивается через печь с формовочными валками для придания ей правильной геометрической формы. Технология относится к видам обработки стали методом горячей деформации.

Рис. 5 Схема печной и электродуговой сварки в среде флюса

Электросварка

Электросварка чаще других методов применяется при сваривании труб круглого сечения, она позволяет получать высококачественный шов на тонких стенках. Трубные изделия, применяемые для трубопроводных магистралей нефтегазовой промышленности, изготавливаются с применением дуговой сварки с флюсом. Для проведения сварочных работ в формообразующем прокатном стане формируют трубную оболочку круглой формы, если диаметр изделия слишком велик, круг собирают из двух листов, которые формуют под прессом до получения полукруглой формы.

Автоматическую электрическую сварку производят одновременно с двух сторон до получения равномерно провареного продольного шва, в качестве электрода используют проволоку. После убирания гранда, ультразвуковой проверки и гидроиспытаний труба готова к применению.

Рис. 6 Электросварка в инертных газах – принцип

Электросварка в среде защитного газа

Недостаток проведения сварочных работ на воздухе – вредное воздействие кислорода на стык, в результате в шовной полосе образуются воздушные пузыри, изменяется ее химический состав из-за карбидизации легирующих элементов, на поверхности появляется окалина.

Избавиться от указанных вредных факторов, возникающих вследствие воздействия на металл кислорода окружающей среды, позволяет применение в области сварки инертных защитных газов: углекислого, аргона и гелия. При работе нейтральные газы, будучи тяжелее воздуха, вытесняют его из рабочей зоны, исключая контакт расплавленной сварочной ванны с атмосферным кислородом. В качестве электродов используют тугоплавкие изделия из вольфрама.

Сварку в среде инертного газа чаще применяют для соединения деталей из нержавеющей или высоколегированной стали, швы отличаются однородностью материала, одинаковой толщиной, высоким качеством поверхности, обеспечивают отличную герметичность и прочность стыка.

Трубные изделия, полученные методом электрической сварки, относятся к группе холоднодеформированных.

Рис. 7 Схемы сваривания ТВЧ

Высокочастотная (индукционная) сварка

Современный высокоскоростной метод сваривания давлением (прижиманием оплавленных кромок друг другу с физическим усилием), при котором края заготовки нагреваются токами высокой частоты ТВЧ до размягчения, широко используют в трубном производстве. Плотность токов максимальна в поверхностном слое изделия и резко снижается при погружении в глубь заготовки (поверхностный эффект), благодаря чему сильно разогревается только тонкий слой наружной оболочки глубиной 0,1 – 0,15 мм.

Нагрев стыкуемых кромок производится индуктором, расположенным в непосредственной близости от их краев, он генерирует индукционные токи по краям заготовки с помощью двух скользящих по трубной оболочке электродов.

При индукционном сваривании соединяемые трубные кромки заготовки имеют вид буквы Y, ТВЧ подводятся к кромкам посредством индуктора или поворотного ролика так, чтобы он проходил через точку их схождения. Расстояние от токопроводящих контактов до места стыка варьируется в диапазоне от 25 до 300 мм.

Существует несколько технологий индукционной сварки, для соединения трубных кромок из черных и цветных металлов чаще используют методику сваривания под давлением с оплавлением. Скорость нагрева при данной технологии составляет 15·104 °С/с, осадки 2000 мм/с, технология обеспечивает высокое качество сварочного соединения.

Рис. 8 Физические параметры металлов термообработанных и горячередуцированных прямошовных труб классов А и В (ГОСТ 10705-80)

ГОСТ 10706-76 (91)

Здесь речь идет уже об электросварных изделиях, все так же выполненных из стали, но имеющих при этом прямой шов. Такого рода трубы активно используются в целях общего предназначения. Заметим также, что минимальный диаметр труб, согласно этому нормативному документу, должен составлять 42,5 сантиметра, а максимальный – 162 сантиметра.

Таблица №9. Трубы стальные электросварные прямошовные.

Наружный диаметр, мм Теоретическая масса 1 м труб, кг, при толщине стенки, мм
1,0 1,2 1,4 (1,5) 1,6 1,8 2,0 2,2 2,5 2,8 3,0
10 0,222 0,260 3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4
10,2 0,227 0,266
12 0,271 0,320 0,366 0,388 0,410
13 0,296 0,349 0,401 0,425 0,450
14 0,321 0,379 0,435 0,462 0,489 — .
(15) 0,345 0,408 0,470 0,499 0,529
16 0,370 0,438 0,504 0,536 0,568
(17) 0,395 0,468 0,539 0,573 0,608
18 0,419 0,497 0,573 0,610 0,719 0,789
19 0,444 0,527 0,608 0,647 0,687 0,764 0,838
20 0,469 0,556 0,642 0,684 0,726 0,808 0,888
21,3 0,501 0,595 0,687 0,732 0,777 0,866 0,952
22 0,518 0,616 0,711 0,758 0,805 0,897 0,986
(23) 0,543 0,645 0,746 0,795 0,844 0,941 1,04 1,13 1,26 3/4
24 0,567 0,675 0,780 0,832 0,884 0,985 1,09 1,18 1,33
25 0,592 0,704 0,815 0,869 0,923 1,03 1,13 1,24 1,39
26 0,617 0,734 0,849 0,906 0,963 1,07 1,18 1,29 1,45  
27 0,641 0,764 0,884 0,943 1,00 1,12 1.23 1,35 1,51  
28 0,666 0,793 0,918 0,980 1,04 1,16 1,28 1,40 1,57  
30 0,715 0,852 0,987 1,05 1,12 1,25 1,38 1,51 1,70  
32 0,765 0,911 1,06 1,13 1,20 1,34 1,48 1,62 1,82 2,02  

Продолжение табл. 8

Наружный диаметр, мм Теоретическая масса 1 м труб, кг, при толщине стенки, мм
1,0 1,2 1,4 (1,5) 1,6 1,8 2,0 2,2 2,5 2,8
33 0,789 0,941 1,09 1,17 1,24 1,38 1,53 1,67 1,88 2,09
33,7 0,962 1,12 1,19 1,27 1,42 1,56 1,71 1,92 2,13
35 1,00 1,16 1,24 1,32 1,47 1,63 1,78 2,00 2,22
36 1,03 1,19 1,28 1,36 1,52 1,68 1,83 2,07 2,29
38 1,09 1,26 1,35 1,44 1,61 1,78 1,94 2,19 2,43
40 1,15 1,33 1,42 1,52 1,70 1,87 2,05 2,31 2,57
42 1,21 1,40 1,50 1,59 1,78 1,97 2,16 2,44 2,71
44,5 1,28 1,49 1,59 1,69 1,90 2,10 2,29 2,59 2,88
45 1,30 1,51 1,61 1,71 1,92 2,12 2,32 2,62 2,91
48 1,61 1,72 1,83 2,05 2,27 2,48 2,81 3,12
48,3 1,62 1,73 1,84 2,06 2,28 2,50 2,82 3,14
51 1,71 1,83 1,95 2,18 2,42 2,65 2,99 3,33
53 1,78 1,91 2,03 2,27 2,52 2,76 3,11 3,47
54 1,82 1,94 2,07 2,32 2,56 2,81 3,18 3,54
57 1,92 2,05 2,19 2,45 2,71 2,97 3,36 3,74
60 2,02 2,16 2,30 2,58 2,86 3,14 3,55 3,95
63,5 2,14 2,29 2,44 2,74 3,03 3,33 3,76 4,19
70 2,37 2,53 2,70 3,03 3,35 3,68 4,16 4,64
73 3/4 3/4 2,47 2,64 2,82 3,16 3,50 3,84 4,35 4,85
76 2,58 2,76 2,94 3,29 3,65 4,00 4,53 5,05
88 3,21 3,60 4,00 4,38 4,96 5,54
89 3,45 3,87 4,29 4,71 5,33 5,95
95 3/4 4,59 5,70
102 3/4 3/4 3/4 4,45 4,93 5,41 6,13 6,85
108 3/4 4,71 5,23 5,74 6,50 7,26
114 4,98 5,52 6,07 6,87 7,68
127 5,56 6,17 6,77 7,68 8,58

Продолжение табл. 8

Наружный диаметр, мм Теоретическая масса 1 м труб, кг, при толщине стенки, мм
1,0 1,2 1,4 (1,5) 1,6 1,8 2,0 2,2 2,5 2,8
133 5,82 6,46 7,10 8,05 8,99
140 6,13 6,81 7,48 8,48 9,47
152 3/4 6,67 7,40 8,13 9,22 10,30
159 6,98 7,74 8,51 9,65 10,79
168 7,38 8,19 9,00 10,20 11,41
177,8 7,81 8,67 9,53 10,81 12.08
180
193,7 9,46 10,39 11,79 13,18
219 13,35 14,93
244,5

Продолжение табл. 8

Наружный диаметр, мм Теоретическая масса 1 м труб, кг, при толщине стенки, мм
3,0 3,2 3,5 3,8 4,0 4,5 5,0 5,5 6,0 7,0 8,0
26 3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4
27
28
30
32 2,15
33 2,22
33,7 2,27
35 2,37
36 2,44 3/4 3/4 3/4
38 2,59 3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4
40 2,74 3/4 3/4 3/4 3/4 3/4
42 2,89 3/4
44,5 3,07
45 3,11 3/4
48 3,33 3,54 3,84
48,3 3,35 3,56 3,87
51 3,55 3,77 4,10
53 3,70 3,93 4,27
54 3,77 4,01 4,36

Таблица №9. Предельные отклонения по наружному диаметру трубы

Наружный диаметр труб, мм Предельные отклонения по наружному диаметру при точности изготовления
обычной повышенной
10 +-0,2 мм 3/4
Св. 10 до 30 включ. +-0,3 мм +-0,25
 » 30 » 51 » +-0,4 мм +-0,35
 » 51 » 193,7 » +-0,8 % +-0,7 %
 »193,7 » 426 » +-0,75 % +-0,65 %
 » 426 » 1020 » +-0,7 % +-0,65 %
 » 1020 +-0,6 % +-6,0 мм

Виды труб по способу производства

Различают следующие способы производства трубопроводов: горячедеформированные, холоднодеформированные, электросварные. Размеры и предельные отклонения изделий, материалы изготовления регламентируются сортаментами на трубы стальные круглые, разные сортаменты для каждого способа производства:

Трубы стальные бесшовные горячедеформированные ГОСТ 8732

Изготовление труб происходит в три этапа. В начале в нагретой до 900-1200 градусов круглой заготовке на специальных станках делают прошивку отверстия, в результате получается гильза. Дальше гильзу раскатывают в черновую трубу, и последний этап, это калибрование, прокатка с окончательными размерами по толщине и диаметру.

Размеры получаемых изделий по этому способу производства могут быть: наружный диаметр 16-630 мм, толщина стенки 1,5-50 мм. Заготовки изделий разделяются на несколько групп, в зависимости от применяемого материала изготовления:

  • А –механические свойства изделия нормируются.
  • Б – химический состав регламентируется при изготовлении.
  • В – одновременно регламентируются механические свойства и химический состав;
  • Г – нормируется химический состав и проверяются механические свойства на опытных образцах;
  • Д – регламентируется значение испытательного давления при проверке.

Производство горячедеформированных труб

Трубы стальные бесшовные холодно деформированные по ГОСТ 8734

Для прокатки используют круглые стальные заготовки. Заготовка нагревается в специальных печах до температуры начала кристаллизации для получения необходимой пластичности. Затем прошивается и попадает в прокатный стан, где с помощью вальцов формируются черновые размеры изделия. Последняя операция, это калибровка и нарезка определенной длины.

В отличие от горячедеформированной трубы, холоднодеформированная во время калибровки получает дополнительную термообработку, что делает такие изделия устойчивыми и долговечными.

Холоднодеформированные изделия делятся на следующие категории, где главным критерием является отношение диаметра D к размеру стенки S:

  1. Особотонкостенные, при отношении D/S больше 40. Если размер D=20 мм и меньше, размер S=0,5 мм и меньше.
  2. Тонкостенные, при отношении D/S от 12,5 и меньше 40. Кроме того трубы при D=20 мм. и меньше, при S=1,5 мм, и меньше.
  3. Толстостенные, при отношении D/S от 6 до 12,5.
  4. Особотолстостенные при отношении D/S меньше 6.

Тонкостенные и особотонкостенные трубы применяются в различных гидравлических системах, автомобильных моторах, промышленных холодильных установках, а также в медицинской и пищевой отрасли. Основное применение толстостенных труб – это нефтяная и газовая промышленность.

Тонкостенные холоднокатаные изделия

Трубы стальные электросварные по ГОСТ 10704

Технология изготовления включает в себя несколько этапов, которые объединены в один непрерывный процесс:

  1. Резка листовой заготовки. Она выполняется на высокоточных станках и позволяет получать заготовки одинаковых размеров.
  2. Для получения бесконечной ленты полоски свариваются между собой, предварительно пропущенные через систему валиков для устранения дефектов поверхности.
  3. Полученную заготовку пропускают через систему горизонтальных и вертикальных вальцов, с помощью которых формируется изделие.
  4. Сварка кромок производится с помощью высокочастотной сварки. Кромки заготовки нагреваются индуктором до температуры плавления, а потом сдавливаются обжимными роликами. Другой способ, когда кромки нагреваются с помощью высокочастотного генератора, ток подается на кромки с помощью контактов.

  5. Калибровка и снятие грата. Заготовку охлаждают, а потом пропускают через калибровочные валики, для устранения овальности и обеспечения необходимых размеров.
  6. Резка изделия. Заготовки разрезаются в необходимый размер.
  7. Контроль качества изготовляемых изделий производят тремя способами: контроль сварного шва, испытание с помощью повышенного давления воды и сплющивание. Для контроля сварного шва, в основном применяют ультразвуковой способ. Дефектоскоп расположен непосредственно на линии после сварочной операции. Контролю подвергаются 100% изделий. Гидроиспытанию подвергаются 15% изделий из партии. А проверку на сплющивание проходят два изделия из партии.

Схема изготовления электросварных труб

Электросварные трубопроводы широко применяются при прокладке инженерных сетей, которые выдерживают большие нагрузки и давления. Изделия диаметром 1200 мм. используют при монтаже почти всех магистральных газопроводов и нефтепроводов.

Особенности маркировки труб

Спектр видов и категорий труб различной формы, полученных с помощью холодной или горячей прокатки, чрезвычайно широк. Наиболее часто применяются в строительстве и на промышленных предприятиях:

  • круг.
  • квадрат.
  • овал простой и плоский.
  • прямоугольник.

Таблицы диаметров стальных труб круглого сечения включают очень большое количество типоразмеров.

Квадратное и прямоугольное сечения применяются в конструкциях с максимальным соотношением жёсткости к массе, а именно:

  • несущих частях каркасных конструкций.
  • вертикальных стойках.

Технические требования для процесса производства готовой продукции (квадрат и прямоугольник) содержатся в ГОСТ 13663-86.

Для маркировки изделий трубопрокатного производства разработан ГОСТ 10692-80. В нём сведено воедино всё, что нужно соблюдать при нанесении информации на готовое изделие. Процесс может осуществляться при помощи:

  • электрографа.
  • штампа из резины.
  • клеймения.
  • влагостойкой краски.

Образец маркировки

Клеймо даёт покупателю полную информацию о готовой партии:

  1. Размеры.
  2. Марка стали.
  3. ГОСТ.
  4. Товарный знак изготовителя.
  5. Дата выпуска.

Металлопластик

Достоинства и недостатки

Эти трубы дешевы и красивы, легко собираются в водопровод и не требуют для этого специального инструмента. Однако в силу как особенностей материала, так и монтажа часто через несколько сезонов текут на .

Стандарты и размеры

Сортамент на трубы из металлополимеров стандартом ГОСТ Р 53630-2009 «Трубы напорные многослойные для систем водоснабжения и отопления» не регламентируется; ГОСТ указывает лишь стандарты качества трубы .

Фактический же сортамент трубный продающихся в России изделий из металлопластика сводится к шести типоразмерам: 16, 20, 26, 32, 40 и 50 мм.

Сортамент труб и элементы трубопроводных коммуникаций

Трубопроводные сети составляются из следующих основных элементов:

труб разного назначения,

соединительных частей (фланцев, соединительных муфт, колен, угольников, отводов, тройников, крестовин, гребенок и др.),

арматуры (чугунной, стальной и специальной),

Для выбора размеров сечений элементов трубопроводов пользуются системой условных проходов, установленных ГОСТ 356-80 «Арматура и детали трубопроводов. Давления условные, пробные, рабочие. Ряды». Условный проход обозначается Dγ с добавлением цифровой величины условного прохода. Например, условный проход 100 мм обозначается Dγ 100.

Для транспортирования нефти и газа применяются сле­дующие виды труб:

1) стальные бесшовные горячекатаные по ГОСТ 8732-78 «Трубы стальные бесшовные, горячедеформированные. Сорта­мент». Изготавливаются из углеродистой стали марок 10, 15, 20, 25 и низколегированных сталей,

стальные бесшовные холоднотянутые и холоднокатаные по ГОСТ 8734-75 «Трубы стальные бесшовные, холоднодеформированные. Сортамент». Изготавливаются из углеродистой ста­ли марок 10, 15, 20, 25 и легированных сталей,

стальные сварные водогазопроводные (газовые) по ГОСТ 3262—75 «Трубы стальные водогазопроводные. Технические ус­ловия»,

Для перекачки корродирующих нефтепродуктов применя­ются трубы из легированной стали (ГОСТ 550-75 «Трубы сталь­ные бесшовные для нефтеперерабатывающей и нефтехимической промышленности. Технические условия»). Для трубопроводов наружным диаметром до 426 мм используют стальные бесшов­ные горячекатаные трубы из углеродистых и легированных ста­лей.

Для магистральных трубопроводов диаметром более 426 мм применяют электросварные прямошовные или спирально-сварные из низколегированных сталей с более высокими механи­ческими свойствами по сравнению с углеродистыми сталями. Это

позволяет изготавливать трубы со стенками уменьшенной тол­щины.

Трубы, работающие под давлением, должны выдерживать испытательное гидравлическое давление, определяемое по формуле

где δ минимальная толщина стенки трубы, мм, R – допускае­мое напряжение, МПа, равное 40 % временного сопротивления разрыву, DB – внутренний диаметр трубы, мм.

Существуют два метода изготовления труб из стальных болванок:

1) непосредственное вытягивание нагретой до пластическо­го состояния болванки с постепенным приданием ей формы трубы,

2) прокатка горячей болванки в пластину (штрипс) нужной толщины, которую затем сворачивают в трубу, а получающийся при этом продольный шов сваривают.

Трубы, изготовленные первым способом, называют цельно­тянутыми, а вторым – сварными.

Цельнотянутые трубы, которые называют также бесшов­ными, изготовляют двумя способами: способом специальной прокатки и способом последовательного расширения. В обоих случаях процесс изготовления трубы начинается с придания бол­ванке строго цилиндрической формы и превращения ее путем «прошивки» сердечником в гильзу со сквозным продольным от­верстием небольшого диаметра.

Процесс изготовления сварной трубы начинают с заготовки длинной и узкой стальной полосы (штрипса) путем резки сталь­ных листов на специальном стане. Затем на другом стане, имею­щем ряд валков, штрипс последовательными этапами изгибается до придания ему формы трубы. Для сварки трубы применяют электродуговую автоматическую сварку под слоем флюса на специальных станах.

Спирально сваренные трубы являются разновидностью сварных труб. Штрипс для них изготовляют в виде узкой сталь­ной ленты, которая, проходя через специальный стан-автомат, из­гибается в спираль по форме трубы. Спиральный шов сваривает­ся автоматической сваркой. Такой шов увеличивает прочность трубы, повышая жесткость и не ослабляя продольного сечения.

Сварные трубы, кроме простоты изготовления и удешевле­ния, имеют перед цельнотянутыми то преимущество, что их можно изготовлять большого диаметра с малой толщиной стенок.

Алюминиевые трубы конкурируют со стальными при сооружении низконапорных газо- и нефтепроводов и промысловых сборных коллекторов. Наибольший диаметр алюминиевых труд составляет 300 мм. Низко- и среднепрочные сплавы алюминия легко свариваются. Применение алюминия делает ненужным ан­тикоррозионные покрытия.

Сортаменты труб 3. Сортамент труб и элементы трубопроводных коммуникаций Трубопроводные сети составляются из следующих основных элементов: труб разного назначения, соединительных частей (фланцев,

Сортамент «холодного» проката

Сортамент бесшовных труб из стали, овальных или прямоугольных изделий, изготавливаемых с использованием технологии деформирования цилиндрической заготовки, определяется по следующим нормативным документам:

  • ГОСТ 8639-82. В этой инструкции к производству указаны параметры, которыми характеризуются квадратные стальные трубы, изготовленные по технологии «холодного» проката. Исходя из этого норматива, профильные трубы должны иметь размеры граней от 10 до 120 миллиметров. Стоит отметить, что отдельный нормативный документ, по которому нормируется производство стальных прямоугольных труб (ГОСТ 8645-82), определяет размеры таких изделий в пределах, начиная от 10х15 миллиметров и заканчивая соотношением 120х80 миллиметров. Толщина стенок «холодного» профильного проката в любом случае варьируется от 1 до 9 миллиметров.
  • ГОСТ 8734-75. Данный нормативный документ включает в себя все параметры круглых труб, изготовленных методом «холодного» проката. Размерный ряд, который имеет такая стальная труба, может изменяться в диаметре от 5 миллиметров до 250 миллиметров. На общее количество типовых размеров влияет толщина стенки, размер которой может изменяться от 0,3 до 24 миллиметров.
  • ГОСТ 8642-68, где указаны параметры для производства трубы овальной формы технологией «холодной» деформации. Диапазон размера внешнего сечения труб изменяется от показателя 16х10 миллиметров до 90х32 миллиметра. Размер толщины стенки может составлять от 0,5 до 2,5 миллиметров.

Стоит отметить, что сортамент труб овальной формы, так же, как и классической круглой, изготовленных по технологии «холодного» проката, пользуется большей популярностью, чем сортамент профильных изделий. Это обосновывается тем, что овальные и круглые трубы холоднокатного типа используются значительно чаще, чем дорогие профильные изделия, имеющие множество конкурентов сварного типа, ни в чем не уступающих по своему функционалу.

Основные геометрические характеристики сечения трубного металлопроката

Для оценки эксплуатационных возможностей круглых труб значение имеют такие параметры сечения как круговой момент сопротивления, момент инерции и радиус инерции.

Под моментом сопротивления W, мм3, понимают силовой фактор, который вызывается внутренними нагрузками, возникающими в трубе, подвергаемой внешним упругим деформациям. В сопротивлении материалов данный параметр зависит от момента инерции плоского сечения I, мм4, и от расстояния между внешней внешним диаметром и осью трубы e, мм:

 W = I/e

Момент сопротивления характеризует способность сечения противостоять внешним силовым факторам. Для кольца (плоской фигуры, определяющей сечение обычной, не тонкостенной, круглой трубы) момент сопротивления не зависит от направления координат, и устанавливается по зависимости

 W = πD3/32 (1-с4),

где:

  • D – внешний диаметр профиля, мм;
  • с = d/D – соотношение внутреннего d и внешнего D диаметров сечения.

Трубный профиль характеризуется более высоким моментом сопротивления. Это позволяет ему успешнее справляться с внешними силовыми факторами, чем, например, сплошной профиль с той же площадью поперечного сечения. Поэтому такие трубы применяются в таких механических и гидравлических системах, которые в процессе эксплуатации подвергаются значительным напряжениям изгиба. Нередко эти напряжения изменяются по знаку и времени.

Момент инерции – это термин, используемый для измерения или количественного определения количества массы, расположенной на наиболее удалённых между собой точках объекта. Момент инерции симметричного сечения рассчитывается относительно гипотетической оси вращения, и поэтому будет одинаковым как для оси х, так и для оси у. В данном случае, выбрав ось вращения кольца, момент инерции его сечения будет равен

 I = πD4/64(1 – с4)

Момент инерции считается энергетическим свойством сечения: при расчете, сколько энергии будет храниться во вращающемся объекте, энергия пропорциональна моменту инерции. Таким образом всегда стараются выбирать ось вращения и форму объекта, которая обеспечила бы наибольший момент инерции при максимально запасённой энергии. Для кольца это условие выполняется автоматически. Поэтому с прочностной точки зрения момент инерции кольца представляет собой максимальное противодействие объекта при попытке развернуть его вдоль оси.

Радиус инерции i представляет собой расстояние от оси поворота кольцевого сечения до точки, в которой сконцентрирована масса материала этого кольца. Радиус инерции определяется по формуле i = (I/F)0,5, где F – площадь сечения. Радиус инерции характеризует гибкость и устойчивость трубы под действием внешних нагрузок. Рассмотренные характеристики учитываются в расчётах на жёсткость при кручении. Соответствующие формулы сведены в таблицу:

Форма поперечного сечения Момент инерции при кручении Момент сопротивления при кручении Положение точки, в которой возникают наибольшие напряжения кручения
Цельная толстостенная труба Ik = 0,1d4(1-c4) Wk = 0,2d3(1-c4) Периметр внешнего контура трубы
Цельная тонкостенная труба Ik = πd3t/4 (t – толщина стенки) Wk = πd2t/2 (t – толщина стенки) Во всём сечении напряжения одинаковы
Сварная тонкостенная труба Ik = πdt3/3 Wk = πdt2/3 Наибольшее напряжение возникает по линии, противоположной месту сварного шва

Условное обозначение

По ГОСТ 10704-91 трубы обозначаются в виде числовой дроби, в ее верхней части (в числителе) указаны:

  • внешний диаметр (мм);
  • толщина (мм);
  • длина (мм);
  • точность;
  • соответствующий госстандарт.

В нижней части дроби (знаменателе) указывают параметры стали:

  • группа;
  • марка;
  • госстандарт.

Рис. 13 Варианты обозначения

В производстве трубных прямошовных изделий руководствуются ГОСТ 10704-91, регламентирующим сортамент стальных электросварных труб – их размерные параметры, массу и пределы отклонений от геометрической формы. Выполнение данного стандарта позволяет унифицировать свою продукцию многочисленным производителям и сделать ее взаимозаменяемой при использовании в промышленных, производственных, градостроительных, коммунальных инженерных коммуникациях.

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации