Андрей Смирнов
Время чтения: ~26 мин.
Просмотров: 0

Схема термостата

Детали устройства

Выше было предложено использовать в качестве температурного сенсора термистор, но это не единственный вариант.

В принципе, в этом качестве может быть задействован любой полупроводниковый элемент, так как характеристики этих деталей всегда зависят от температуры.

Так, например, ток коллектора обычного биполярного транзистора при нагреве возрастает, что неминуемо отражается на работе усилительного каскада (транзистор перестает реагировать на входной сигнал из-за смещения рабочей точки).

Похожим образом реагируют на изменение температуры и кремниевые диоды. При температуре +25 градусов напряжение на контактах свободного диода составит около 700 мВ, а замеры на перманентном диоде покажут примерно 300 мВ. Если же температура будет повышаться, напряжение с каждым градусом будет падать примерно на 2 мВ.

Однако, у всех этих элементов есть существенный недостаток: собранные на их базе терморегуляторы с большим трудом приходится настраивать, иначе говоря, калибровать. Ведь нам только приблизительно известно, какую элемент демонстрирует характеристику при той или иной температуре и как именно он реагирует на ее колебания. Гораздо проще работать с выпускаемыми современной промышленностью термодатчиками, проходящими калибровку еще на стадии производственного процесса.

Сильного удорожания проекта покупка такой детали не вызовет. Так, например, аналоговый термодатчик марки LM-335 компании National Semiconductor стоит всего 1 доллар.

Можно использовать и его модификации – датчики LM-135 и LM-235, хотя они предназначены для применения, соответственно, в военной электронике и промышленности.

Датчик LM-335 содержит 16 транзисторов и работает подобно стабилитрону, у которого напряжение стабилизации находится в зависимости от температуры.

Только в данном случае все параметры досконально известны: на каждый градус по шкале абсолютных температур (Кельвина) приходится напряжение в 10 мВ или 0,01 В.

Таким образом, если мы хотим знать, каким будет напряжение стабилизации LM-335 при температуре 20 градусов Цельсия, нужно прибавить к этому значению 273 (перевод в градусы Кельвина), а затем результат умножить на 0,01 В. В данном случае получим 2,93 В. На производстве датчик калибруется по температуре 25 градусов Цельсия. Рабочий диапазон температур, в пределах которого напряжение меняется линейно и по указанному закону (10 мВ/градус) лежит в пределах от -40 до +100 градусов Цельсия.

Итак, зная точное напряжение стабилизации LM-335 при той или иной температуре, нам остается выставить соответствующее напряжение на втором входе компаратора – и настройка терморегулятора будет завершена.

  1. Схему на базе термодатчика LM-335 следует компоновать таким образом, чтобы через него протекал ток величиной от 0,45 до 5 мА. Отметим, что напряжение питания терморегулятора не обязательно должно составлять 12 В. Это значение было предложено только потому, что оно позволяет применить вместо самодельного блока питания (понижающий трансформатор + выпрямитель + стабилизатор) обычный адаптер, который можно недорого купить в магазине. Если же все делать самостоятельно, то понижающий трансформатор можно собрать в расчете на выходное напряжение в пределах 3 – 15 В. Главное, чтобы на такое же напряжение было рассчитано используемое в схеме реле.
  2. Далее подбирают сопротивление резисторов делителя напряжения и переменного резистора таким образом, чтобы при имеющемся напряжении сила протекающего через термодатчик тока находилась в указанных пределах. В принципе, датчик останется работоспособным и при силе тока свыше 5 мА, но тогда он будет сильно греться, из-за чего терморегулятор будет работать некорректно.
  3. В качестве компаратора можно применить микросхему того же производителя, выпускаемую под маркой LM-311 (модификации для «военки» и промышленности – соответственно, LM-111 и LM-211).

Используемое в схеме реле является многоконтактным (типа МКУ). В упрощенном исполнении (без аккумулятора) можно воспользоваться автомобильным реле

Важно удостовериться, что допустимая для данного реле величина силы тока соответствует мощности нагревателя

Как сделать терморегулятор своими руками

1. Вскрывается донор корпуса и силовой схемы — электронный таймер CDT-1G. На сером трехжильном шлейфе установлен микроконтроллер таймера. Отпаиваем шлейф от платы. Отверстия для проводов шлейфа имеют маркировку (+) — питание +5 Вольт, (О) — подача управляющего сигнала, (-) — минус питания. Коммутировать нагрузку будет электромагнитное реле.

Донор корпуса
Параметры таймера
Удобный корпус
Силовая схема

2. Так как питание схемы  от силового блока  не имеет гальванической развязки от сети, то все работы по проверки и настройке схемы проводим от безопасного источника питания 5 вольт.  Сначала на стенде проверяем работоспособность элементов схемы.

Сборка макета
Проверка работы

3. После проверки элементов схемы конструкция собирается на плате. Плата для устройства не разрабатывалась и собрана на куске макетной платы. После сборки также проводится проверка работоспособности на стенде.

4. Термодатчик R1 установлен снаружи на боковой поверхности корпуса блок- розетки, проводники изолированы термоусадочной трубкой. Для недопущения контакта с датчиком, но и сохранения доступа  наружного воздуха к датчику сверху установлена  защитная трубка. Трубка изготовлена из средней части шариковой авторучки. В трубке вырезано отверстие для установки на датчик. Трубка приклеена к корпусу.

Защитная трубка
Термодатчик
Защитная трубка

5. Переменный резистор R3 установлен на верхней крышке корпуса, там же сделано отверстие для светодиода. Корпус резистора полезно для безопасности покрыть слоем изоленты.

6. Ручка регулировки для резистора R3 самодельная и изготовлена своими руками из старой зубной щетки подходящей формы :).

Резистор R3
Донор ручки
Ручка снизу
Ручка настройки

7. Перед окончательной сборкой еще раз проверяем работу на стенде, далее подпаиваем проводники к контактам силовой схемы и включаем в сеть. При включении схема должна работать.

Еще раз напоминаю питание терморегулятора бестрансформаторное и гальваническая развязка от сети отсутствует, то есть опасное сетевое напряжение присутствует на элементах устройства. При подборе резистора R3 недопустимо применение резистора с отсутствием изоляции управляющей ручки от контактов.

Терморегулятор изготовлен для управления работой электрокамина на котором регулятор температуры не установлен.

Общее понятие о температурных регуляторах

Приборы, фиксирующие и одновременно регулирующие заданное температурное значение, в большей степени встречаются на производстве. Но и в быту они также нашли своё место. Для поддержания необходимого микроклимата в доме часто используются терморегуляторы для воды. Своими руками делают такие аппараты для сушки овощей или отопления инкубатора. Где угодно может найти своё место подобная система.

В данном видео узнаем что из себя представляет регулятор температуры:

https://youtube.com/watch?v=bXNiBuC6LSM

В действительности большинство терморегуляторов являются лишь частью общей схемы, которая состоит из таких составляющих:

  1. Датчик температуры, выполняющий замер и фиксацию, а также передачу к регулятору полученной информации. Происходит это за счёт преобразования тепловой энергии в электрические сигналы, распознаваемые прибором. В роли датчика может выступать термометр сопротивления или термопара, которые в своей конструкции имеют металл, реагирующий на изменение температуры и под её воздействием меняющий своё сопротивление.
  2. Аналитический блок – это и есть сам регулятор. Он принимает электронные сигналы и реагирует в зависимости от своих функций, после чего передаёт сигнал на исполнительное устройство.
  3. Исполнительный механизм – некое механическое или электронное устройство, которое при получении сигнала с блока ведёт себя определённым образом. К примеру, при достижении заданной температуры клапан перекроет подачу теплоносителя. И напротив, как только показания станут ниже заданных, аналитический блок даст команду на открытие клапана.

Схема терморегулятора — второй вариант

Немного поразмыслив пришел к выводу, что возможно сюда присоединить тот же контроллер, что и на паяльной станции, но с небольшой доработкой. В процессе эксплуатации паяльной станции были выявлены незначительные неудобства: необходимость перевода таймеров в 0, и иногда проскакивает помеха которая переводит станцию в режим SLEEP

. Учитывая то, что женщинам ни к чему запоминать алгоритм перевода таймера в режим 0 или 1 была повторена схема той же станции, но только канал фен. А небольшие доработки привели к устойчивой и «помехонекапризной» работе терморегулятора в части управления

При прошивке AtMega8 следует обратить внимание на новые фьюзы. На следующем фото показана термопара К-типа, которую удобно монтировать в духовке

Работа регулятора температуры на макетной плате понравилась — приступил к окончательной сборке на печатной плате.

Закончил сборку, работа тоже стабильная, показания в сравнении с лабораторным градусником отличаются порядка на 1,5°C, что в принципе отлично. На печатной плате при настройке стоит выводной резистор, пока что не нашел в наличии SMD такого номинала.

Светодиод моделирует ТЭНы духовки. Единственное замечание: необходимость создания надежной общей земли, что в свою очередь сказывается на конечный результат измерений

В схеме необходим именно многооборотный подстроечный резистор, а во-вторых обратите внимание на R16, его возможно тоже необходимо будет подобрать, в моём случае стоит номинал 18 кОм. Итак, вот что имеем:

В процессе экспериментов с последним терморегулятором появились ещё незначительные доработки, качественно влияющие на конечный результат, смотрим на фото с надписью 543

— это означает датчик отключен или обрыв.

И наконец переходим от экспериментов до готовой конструкции терморегулятора. Внедрил схему в электроплиту и пригласил авторитетную комиссию принимать работу:) Единственное что жена забраковала — маленькие кнопки на управлении конвекцией, общее питание и обдув, но это решаемо со временем, а пока выглядит вот так.

Регулятор заданную температуру держит с точностью до 2-х градусов. Происходит это в момент нагрева, из-за инертности всей конструкции (ТЭНы остывают, внутренний каркас выравнивается температурно), в общем в работе схема мне очень понравилась, а потому рекомендуется для самостоятельного повторения. Автор — ГУБЕРНАТОР
.

Обсудить статью СХЕМА ТЕРМОРЕГУЛЯТОРА

Автономный обогрев частного дома позволяет выбирать индивидуальные температурные режимы, что очень комфортно и экономно для жильцов. Чтобы каждый раз не при смене погоды на улице не задавать другой режим в помещении, можно использовать терморегулятор или термореле для отопления, который можно установить и на радиаторы и на котёл.

Схема подключения теплого пола большой мощности

При подключении обязательно проверяйте мощность, которую способен пропустить через себя термостат. Обычно он рассчитан на нагрузку не более 16А (3,7кВт при напряжении 230В).

Это именно максимальное значение. Рекомендуется использовать устройство под постоянной нагрузкой не более 70% от этой мощности.

В этом случае девайс прослужит долго и исправно. Релюшка, которая коммутирует контакт, при перегреве быстро выходит из строя. А вместе с ней придется менять и весь прибор.

При нагрузке более 3,7кВт потребуется модульный контактор.

Схема подключения в этом случае изменится на следующую.

Здесь вместо нагрузки, провода с регулятора идут на контакты включающей катушки (А1-А2), а сам кабель обогрева подключается к силовым клеммам пускателя (1-2 или 3-4).

Самодельный терморегулятор: пошаговая инструкция

Если вы приобрели все необходимые составляющие для сборки, осталось рассмотреть подробную инструкцию. Рассматривать будем на примере датчика температуры рассчитанного на 12В.

Самодельный регулятор температуры собирается по следующему принципу:

  1. Подготавливаем корпус. Можно использовать старые оболочки от счетчика, например от установки «Гранит-1».
  2. Схему подбираете ту, которая вам больше понравится, но можно и сориентироваться и на плату от счетчика. Прямой ход с пометкой «+» необходим для подключения потенциометра, Инверсионный вход с отметкой «–» будет служить для подключения термодатчика. Если так случилось, что напряжение на прямом входе будет выше требуемого, на выходе установится высокая отметка и транзистор начнет подавать питание на реле, а оно в свою очередь на нагревательный элемент. Как только напряжение на выходе превысит допустимую отметку – реле отключится.
  3. Для того чтобы терморегулятор срабатывал вовремя и перепады температур были обеспечены, потребуется сделать с помощью резистора связь отрицательного типа, которая образуется между прямым входом и выходом на компараторе.
  4. Что касается трансформатора и его питания, то здесь может понадобиться индукционная катушка от старого электрического счетчика. Для того чтобы напряжение соответствовало показателю в 12 вольт, вам нужно будет сделать 540 витков. Уместить их получится только в том случае, если диаметр провода будет не более 0,4 мм.

Вот и все. В этих небольших действиях и заключается вся работа по созданию терморегулятора своими руками. Возможно, самому без определенных навыков сделать его сразу и не получится, однако с опорой на фото и видео инструкции вы сможете испытать все свои умения.

Благодаря простой конструкции, самостоятельно созданный термоконтроллер может быть использован где угодно.

Например:

  • Для теплого пола;
  • Для погреба;
  • Котла отопления;
  • Может заняться регулировкой температуры воздуха;
  • Для духовки;
  • Для аквариума, где будет контролировать температурный показатель воды;
  • Для того чтобы контролировать температурное значение насоса электрокотла (его включения и отключение);
  • И даже для автомобиля.

Не обязательно использовать цифровой, электронный или механический покупной термовыключатель. Купив недорогое термореле, сделать регулировку мощности на симисторе и термопаре и ваш самодельный аппарат будет работать не хуже покупного.

1 Механический терморегулятор

Производство таких устройств не обходится без их программирования, поэтому их цена очень высокая. Они позволяют настроить температурный режим по разным параметрам, к примеру, по часам или дням недели. Температура при этом будет меняться автоматически.

Если говорить о терморегуляторах для промышленных стальных печей, то сделать их самостоятельно будет сложно, так как они имеют сложную конструкцию и требуют внимания не одного специалиста. Такие в основном изготавливаются на заводах. Но сделать простой регулятор температуры своими руками для автономной отопительной системы, инкубаторов и т. п. — это несложная задача. Главное, придерживаться всех чертежей и рекомендаций по производству.

Для того чтобы понять, как работает терморегулятор, можно разобрать простую механическую конструкцию. Она работает по принципу открывания и закрывания дверки (заслонки) котла, чем уменьшает или увеличивает доступ воздуха к камере сгорания. Реагирует датчик, конечно же, на температуру.

Для производства такого устройства понадобятся следующие комплектующие:

  • пружина для возврата;
  • два рычага;
  • две алюминиевые трубки;
  • регулировочный узел (имеет вид кран-буксы);
  • цепочка, которая соединяет две части (термостат и дверку).

Все комплектующие необходимо собрать и вмонтировать на котёл.

Но такая схема имеет и свои существенные минусы. Проблема в том, что определить таким образом, когда сработает заслонка, трудно. Чтобы приблизительно настроить механизм, нужны точные расчёты. Невозможно определить в точности насколько будет расширяться алюминиевая труба. Поэтому в большинстве случаев сейчас предпочитают устройства с электронными датчиками.

Терморегулятор для инкубатора своими руками – схема

Термостат можно собрать, так сказать, с нуля, используя для этого различные радиотехнические детали.

Наибольшее признание у радиолюбителей получила схема на основе специального элемента, именуемого компаратором.

Компаратор имеет две пары входных контактов и одну выходную. Одна из входных пар называется прямой (помечается знаком «+»), вторая – инверсной (знак «-»).

Функция компаратора заключается в сравнении уровня напряжения на входных контактах. Если напряжение на инверсном входе больше, чем на прямом, – на выходной паре микросхемы устанавливается высокий уровень.

При этом включается подключенное к ней реле, замыкая цепь нагревателя. Если для включения реле требуется больший ток, чем имеется в цепи терморегулятора, компаратор включает его через транзистор.

Как же формируются напряжения на входных контактах компаратора? Одно из них определяется пользователем, для чего в цепь терморегулятора включается переменный резистор. Меняя сопротивление резистора, пользователь фактически задает желаемую температуру.

Напряжение на втором входе зависит от состояния температурного сенсора. В этом качестве применяются различные элементы, характеристики которых меняются с изменением температуры. Например, термистор – резистор, сопротивление которого увеличивается при нагреве и падает при охлаждении (может быть и наоборот – зависит от типа элемента).

Силовая часть терморегулятора, то есть нагреватель, запитана от обычной электросети с напряжением в 220 В. На цепь управления следует подать постоянное напряжение в пределах 12 В, для чего применяется понижающий трансформатор с диодным мостом (выпрямитель) и стабилизатором.

Схема терморегулятора

Данную схему мы, как уже говорилось, дополним аккумулятором. В его цепь включим реле, контакты которого при наличии напряжения в централизованной электросети будут разомкнуты. При этом обогрев инкубатора будет осуществляться лампами на 220 В или таким же инфракрасным обогревателем.

При отключении основного электричества контакты реле в цепи аккумулятора замкнутся и электропитание будет поступать от него. При этом в качестве обогревателей будут использоваться автомобильные лампы.

Как только в основной электросети снова появится напряжение, реле разомкнет цепь аккумулятора, но второй парой контактов подключит зарядное устройство, которое восстановит заряд батареи до первоначального уровня.

Принцип работы

Работа термостата для инкубатора чрезвычайно проста и понятна даже школьнику.

Основными его элементами являются нагреватель, в качестве которого используется инфракрасный излучатель или группа ламп накаливания, и температурный сенсор.

По сигналу сенсора термостат подает питание на нагреватель либо отключает его, благодаря чему температура в инкубаторе поддерживается в требуемом диапазоне.

Следует учесть, что значения комфортных температур для каждого вида птицы несколько разнятся. Чтобы инкубатор получился универсальным, нужно предусмотреть возможность настройки желаемой температуры.

Также нельзя забывать о том, что система электроснабжения является наиболее уязвимой частью загородной инфраструктуры. Лед, шквальный ветер и падающие деревья могут оборвать провода и обесточить вашу птицеферму, испортив тем самым все дело.

Чтобы иметь возможность благополучно пережить аварию, необходимо оборудовать терморегулятор аккумулятором, на который он будет автоматически переключаться при отключении основного электроснабжения.

После возобновления работы электросети прибор должен снова зарядить подсевший аккумулятор – также автоматически.

Терморегулятор или термостат – удобное устройство, которое широко применяется в быту, например, для автоматической регуляции обогрева подвала обогревателем. Как сделать терморегулятор своими руками и какие детали для этого понадобятся, смотрите в статье.

Об особенностях выбора стабилизатора напряжения для газового котла читайте далее. Типы стабилизаторов и технические характеристики.

Думаете, какой обогреватель лучше выбрать – масляный или конвекторный? Эта информация https://microklimat.pro/otopitelnoe-oborudovanie/obogrevateli/chto-luchshe-konvektor-ili-maslyanyj-obogrevatel.html поможет вам определиться с выбором.

Назначение и принцип работы терморегулятора

Терморегулятор, иногда называемый термостатом (что не совсем верно, термостатом можно назвать весь инкубатор целиком), служит для поддержания заданной температуры путем включения и выключения нагревателя в зависимости от заданной температуры. Температура определяется при помощи датчика.


С помощью терморегулятора фермеры поддерживают нужную температуру в инкубаторе.

Датчиком может быть:

  • биметаллическое термореле;
  • термопара;
  • термометр сопротивления;
  • термистор;
  • полупроводниковый датчик.

Как пример, можно привести датчик американской фирмы Dallas Semiconductor, имеющий однопроводной цифровой интерфейс. Его можно использовать в схеме на микроконтроллере. Схема получается несложной, детали недорогими, но потребуются изрядные навыки и знания в области программирования, практически профессиональные, чтобы заставить все это работать надежно и безотказно. Ведь от этого может зависеть партия из сотен яиц.

Когда температура датчика превышает заданное значение, цепь питания нагревателя, например, ламп накаливания, отключается и инкубатор начинает понемногу остывать. Когда температура становится ниже другого заданного значения, лампочки снова включаются.

Получается выключатель-автомат с обратной связью по температуре. Даже с двумя: отрицательная обратная связь автомат отключает, а положительная – включает. Промежуток между порогами включения и отключения называется гистерезисом. Если этот гистерезис равен нулю (чего на практике не бывает), или очень близок к нему, то регулятор будет включаться и выключаться слишком часто и что-нибудь, довольно скоро, выйдет из строя.


Терморегулятор для инкубатора можно сделать самостоятельно.

Существуют регуляторы простые, в которых гистерезис не нормируется и имеет значение, достаточное для практики. Но есть и такие, где порог переключения и гистерезис выставляются раздельно и очень точно. Их используют в промышленности и научных исследованиях.

  • https://microklimat.pro/otopitelnoe-oborudovanie/otopitelnye-pribory/termoregulyator-dlya-inkubatora-svoimi-rukami.html
  • https://amperof.ru/sovety-elektrika/termoregulyator-dlya-inkubatora.html
  • http://ferma-nasele.ru/termoregulyator-dlya-inkubatora-svoimi-rukami.html
  • https://fb.ru/article/237032/shema-termoregulyatora-dlya-inkubatora-svoimi-rukami-termoregulyator-dlya-inkubatora-na-mikrokontorollere
  • http://hardelectronics.ru/sxema-termoregulyatora-dlya-inkubatora.html
  • http://proinkubator.ru/shema-termoregulyatora-inkubatora

Схема работы простого терморегулятора

Обычно для поддержания заданной температуры используются схемы на основе реле. Основными элементами, входящими в данное оборудование, являются:

  • температурный датчик;
  • пороговая схема;
  • исполнительное или индикаторное устройство.

В качестве датчика можно использовать полупроводниковые элементы, термисторы, термометры сопротивления, термопары и биметаллические термореле.

Схема терморегулятор реагирует на превышения параметра над заданным уровнем и включает исполнительное устройство. Самым простым вариантом такого прибора является элемент на биполярных транзисторах. Термореле выполнено на основе триггера Шмидта. В роли датчика температуры выступает терморезистор – элемент, сопротивление которого изменяется в зависимости от повышения или понижения градусов.

R1 – это потенциометр, который устанавливает начальное смещение на терморезисторе R2 и потенциометре R3. За счет регулировки происходит срабатывание исполнительного устройства и коммутации реле K1, когда сопротивление терморезистора изменяется. При этом рабочее напряжение реле должно соответствовать рабочему питанию оборудования. Чтобы защитить выходной транзистор от импульсов напряжения, параллельно подсоединен полупроводниковый диод. Величина нагрузки подключаемого элемента зависит от максимального тока электромагнитного реле.

Внимание!

В интернете можно увидеть картинки с чертежами термостата для разного оборудования. Но довольно часто изображение и описание не соответствуют друг другу. Иногда на рисунках могут быть представлены просто другие устройства. Поэтому изготовление можно начинать только после тщательного изучения всей информации.

Перед началом работ следует определиться с мощностью будущего терморегулятора и температурным диапазоном, в котором предстоит ему работать. Для холодильника потребуются одни элементы, а для отопления –другие.

Монтаж пленочных полов

Модели теплого пола, которые в качестве нагревательного элемента используют специальную пленку, относятся к системам нового поколения. Их устройство имеет некоторые особенности, с которыми следует ознакомиться, прежде чем самостоятельно выполнять подключение.

Система представляет собой термоустойчивый материал, в который запаяны карбоновые или биметаллические нагревательные элементы. Вдоль кромки такой пленки расположены медные проводники, с их помощью система подключается к сети.

Укладывают теплый пленочный пол по аналогии с нагревательными матами, но при этом есть одна особенность. Нагревательную пленку следует укладывать на специальную подложку, распределенную по всей поверхности. Подложка представляет собой материал с покрытием из фольгированной пленки. Она отражает инфракрасные лучи и направляет тепло непосредственно в помещение.

Датчики в этом случае помещают в пластиковую трубку, ее в свою очередь укладывают в углубление, предварительно сделанное в полу.

Преимуществом пленочного пола является возможность резки. Для этого производитель наносит специальные линии с шагом 20-30 см. один край токопроводящих полос полностью изолирован, другой – остается открытым. Это позволяет подключать систему к электропитанию.

Пленку расстилают на поверхности, соединяя части параллельным способом. Один из двух проводов подсоединяют к соседней части, другой провод используют для подключения пленочного пола к терморегулятору.

В качестве финишного напольного покрытия на пленочный теплый пол можно укладывать любой материал. Однако предпочтение лучше отдавать ламинату, он предотвратит повреждение пленки в результате давления на пол.

Возможные причины выхода из строя

Существует несколько явных признаков, свидетельствующих о поломке термостата:

  • компрессор работает, не переставая, или с недолговременными остановками (это можно понять по постоянному шуму холодильника);
  • стены изнутри покрыты льдом, а в морозильнике намерзает снег;
  • в холодильной камере установлена низкая или высокая (относительно) температура;
  • под холодильником растекается вода;
  • рефрижератор сам отключается и перестаёт работать.

Основная причина поломки термостата – механический износ элементов. При этом наиболее вероятно повреждение:

  • корпуса сильфона. Герметичность нарушится, часть хладагента выйдет наружу, и обеспечение требуемой величины давления для включения компрессора станет невозможным;
  • контактов из-за прогорания;
  • соединения трубочки и испарителя. Герметичность, обеспечиваемая клеевым соединением, нарушится.

Как проверить работоспособность самостоятельно

Проверить работоспособность устройства в домашних условиях можно многими способами. Особенно показательны такие, которые связаны с конкретной проблемой. Например, если холодильник работает, не останавливаясь, следует его отключить, разморозить, выкрутить ручку температурного регулятора до минимального значения и заново включить, предварительно поместив внутрь холодильной камеры термометр. Если спустя пару часов значение измерения градусника больше или меньше +6°С, то терморегулятор нужно заменить.

Проверка при образовании льда внутри рефрижератора осуществляется другим путём. При работающем компрессоре необходимо повернуть ручку регулятора и увеличить температуру. При исправном термостате компрессор остановит свою работу.

При проблеме, заключающейся в не включающейся технике, термореле проверяется прямым замыканием двух проводов, входящих в терморегулятор. Если при отсоединении устройства от электросхемы, рефрижератор включается, то термостат неисправен.

Существуют способы проверки, требующие демонтажа прибора. В основном, ими пользуются специалисты, но обычный обыватель так же способен их применять. Один из таких способов: использование мультиметра. Демонтировав термостат, его трубку помещают в холодную воду на несколько минут, а после подключают к мультиметру, предварительно выставленному на режим «сопротивление». Устройство признаётся рабочим, если при «прозвоне цепи» на тестере отображается «0»

Детали устройства регулятора температуры своими руками

В роли датчика температуры обычно выступает терморезистор – элемент, электрическое сопротивление которого меняется в зависимости от температуры. Используют и полупроводниковые элементы – транзисторы и диоды, на характеристики которых температура также оказывает влияние: при нагреве увеличивается ток коллектора (у транзисторов), при этом наблюдается смещение рабочей точки и транзистор перестает работать, не реагируя на входной сигнал.

Но у таких сенсоров есть существенный недостаток: их довольно сложно откалибровать, то есть «привязать» к определенным значениям температуры, из-за чего точность самодельного терморегулятора оставляет желать лучшего.

Между тем промышленность давно освоила выпуск недорогих термодатчиков, калибровка которых осуществляется в процессе изготовления.

К таковым относится прибор марки LM335 от компании National Semiconductor, которым мы и рекомендуем воспользоваться. Стоимость этого аналогового термодатчика составляет всего 1 доллар.

«Тройка» на первой позиции цифрового ряда в маркировке означает, что прибор ориентирован на применение в бытовой технике. Модификации LM235 и LM135 предназначены для использования, соответственно, в промышленности и в военной сфере.

Имея в своем составе 16 транзисторов, этот датчик работает как стабилитрон. При этом его напряжение стабилизации зависит от температуры.

Зависимость следующая: на каждый градус по абсолютной шкале (по Кельвину) приходится 0,01 В напряжения, то есть при нуле по Цельсию (273 по Кельвину) напряжение стабилизации на выходе составит 2,73 В. Производитель калибрует датчик по температуре в 25С (298К). Рабочий диапазон лежит в пределах от -40 до +100 градусов Цельсия.

Таким образом, собирая терморегулятор на базе LM335, пользователь избавляется от необходимости подбирать методом проб и ошибок эталонное напряжение, при котором прибор обеспечит требуемую температуру.

Его можно рассчитать, используя несложную формулу:

V = (273 + T) x 0.01,

Где Т – интересующая пользователя температура по шкале Цельсия.

Помимо термодатчика нам понадобится компаратор (подойдет марки LM311 от того же производителя), потенциометр для формирования эталонного напряжения (настройка требуемой температуры), выходное устройство для подключения нагрузки (реле), индикаторы и блок питания.

Конструкция терморегулятора

Здесь о том, как сделать прибор. Набрав подходящие детали нужно заранее подготовить и настроить те элементы, которые были рассчитаны (R3 и R5), так чтобы они были аккуратно спаяны и их можно было монтировать дальше.

Резистор R6 можно взять либо 1,6 Ом, но такие нечасто попадаются, либо составить из нескольких параллельных (из-за его маленького номинала), либо взять кусок нихромовой проволоки сопротивлением 16,3 Ом (измеряется мультиметром) и отрезать от нее ровно одну десятую часть. Затем она наматывается на резистор большого номинала, скажем, 10 или 100 кОм, чтобы не было его влияния на общее сопротивление и пропаивается на его выводах.

Детали монтируются, как обычно, на печатной плате подходящего размера. Схема несложная, нарисовать дорожки можно либо вручную, либо в подходящей программе для разработки печатных плат, например, Sprint Layout. Это простая бесплатная программа для радиолюбителей. К сожалению, размер статьи не позволяет описать подробностей изготовления печатных плат, но найти информацию в интернете нетрудно.

На фото представлен процесс изготовления терморегулятора.

На ось потенциометра нужно надеть круглую шкалу с наклееной бумагой и жестко ее зафиксировать. На ней будет нанесена градуировка. Шкала может быть сделана подвижной или нет, главное – ее достаточный размер для будущей разметки и “несбиваемость”. Наконец, все собранное помещается в подходящий корпус. Здесь большой простор для домашней конструкторской мысли.

Теперь, как и обещалось, о лампах. Выбранный транзистор имеет максимальный ток 5,5 А, но лучше ограничиться током поменьше. Если взять лампы накаливания по 100 Вт, то при питании через диод их мощность снизится вдвое.

Возьмем ток, например, 4 А и определим число 100-ваттных ламп для этого. Средний ток через лампу составит около 0,23 А с учетом того, что лампа работает один полупериод. 4/0,23 = 17 ламп по 100 Вт. Практически ламп будет меньше, так как инкубаторы обычно теплоизолируют. К тому же слишком мощный нагрев будет приводить к выбросам повышенной температуры.

После сборки необходимо проверить, как работает самостоятельно собранный терморегулятор.

Наладка терморегулятора

Наладка состоит в проверке работоспособности после монтажа и нанесению делений на шкалу в следующем порядке:

  1. Градусных делений.
  2. Делений с шагом в полградуса.
  3. Делений с шагом в 0,1 градус.

В нагрузку включают одну лампочку, просто как индикатор работы. Датчик помещают в сухую песочную баню рядом с образцовым термометром

Баню осторожно и медленно, чтобы не перегреть, нагревают на электроплитке включенной через ЛАТР или другой подходящий регулятор мощности

Рассмотрим калибровку в одной точке, например 35°C. Сначала необходимо уравновесить температуру датчика и образцового термометра в бане. Затем, вращая потенциометр, отмечают карандашом точки на окружности шкалы, где лампа загорается и где она гаснет. Середину можно отмечать делением 35 градусов.

Аналогично делаются деления и для остальных значений. Не помешает сделать градуировку и для десятых долей градуса, учитывая, что как-никак, шкала не будет линейной. После выполнения градуировки можно будет оценить гистерезис. Он должен быть в пределах 0,1…0,15 гр. Цельсия.

Прибор только тогда будет надежным, если все соединения пропаяны тщательно, а клеммные зажимные соединения выполнены чисто и хорошо затянуты.

На видео специалист рассказывает о том, как изготовить терморегулятор своими руками.



Регулятор температуры внутри автоматического инкубатора для яиц, независимо от того, как прибор изготовлен, самостоятельно или заводского производства, относится к одному из самых важных элементов этого изделия.

Природой предусмотрено, что для выведения молодняка птицы разных пород, нужны подходящие условия. Например, температура выведения гусиных яиц в инкубаторе, отличается от параметров выведения уток. Куриные яйца инкубируют при температуре 37,7°, гусиным нужна 38,8°.

Строить инкубаторы отдельно для каждой породы птиц нецелесообразно, поэтому в них предусмотрено регулирование и поддержание нужных условий с помощью терморегуляторов. Если принято решение о создании самодельного терморегулятора для инкубатора, отнеситесь к этому со всей серьёзностью.

Выполнить такую работу под силу тем, кто освоил азы радиоэлектроники, умеет обращаться не только с паяльником, но и измерительными приборами. Кроме того, в работе пригодятся навыки по изготовлению печатных плат, сборке и настройке радиоэлектронных устройств.

В этой статье мы постараемся рассказать о том, как можно самостоятельно изготовить и отрегулировать терморегулятор для инкубации яиц.

Рекомендации по подключению

Чтобы увеличить срок службы электронного термодатчика, его не рекомендуется устанавливать в зоне сквозняков либо в местах активного воздействия прямого солнечного света. Благодаря простой схеме подключения термостата практически любой домашний мастер справится с этой работой. Однако сначала стоит определиться со способом подсоединения:

  1. Классический.
  2. С использованием магнитного пускателя.

Подробно рассмотреть стоит оба варианта.

Стандартная схема

Одним из важных параметров любого термостата является показатель мощности. Один прибор можно использовать для управления несколькими устройствами для обогрева помещения. Именно от мощности терморегулятора и зависит количество отопительных устройств, которые можно к нему подключить. В домашних условиях вполне достаточно использовать приборы мощностью не более 3 кВт.

Существует 2 способа подсоединения данных датчиков

Чаще всего термостаты имеют четыре контакта — по две на вход и выход. Для подключения прибора необходимо протянуть от распределительной коробки два проводника и соединить их с входными клеммами. После этого выходные контакты с помощью двух других проводов соединяются с системой обогрева.

Если возникла необходимость подсоединить к термостату сразу два отопительных устройства, то нужно определиться с типом подсоединения:

  1. Последовательное.
  2. Параллельное.

https://youtube.com/watch?v=qnMXBxOSpiE

С использованием магнитного пускателя

Такая схема подключения механического терморегулятора чаще всего используется для управления несколькими обогревателями. Магнитный пускатель представляет собой коммутационное устройство электромагнитного типа. Он предназначен для использования в сетях с высокими нагрузками. Вариантов подключения термостата через магнитный пускатель довольно много, но домашнему мастеру достаточно знать только один.

Если все было сделано правильно, то остается лишь настроить регулятор на нужный режим работы. Подключение термостата не должно вызвать затруднений, если следовать инструкции. Однако переоценивать свои силы все же не стоит, ведь от качества соединения зависит безопасность членов семьи.

Описание конструкции

Наилучшим образом для этого подходит старый, отслуживший свое электросчетчик.

Здесь найдется и плата, на которой можно разместить радиодетали, и катушка для изготовления понижающего трансформатора.

Кроме того, в электросчетчике имеется клеммник с розеткой, в который очень удобно включать провод от нагревателя.

Термодатчик помещают в стеклянную или термоусадочную трубку (предотвращает механические повреждения) и кладут прямо на лотки с яйцами.

Если в качестве обогревателя предполагается использовать лампы накаливания, то патроны для них лучше закрепить на алюминиевой пластине. Предварительно в ней придется просверлить несколько отверстий соответствующего диаметра.

Обычно нагреватель устанавливается под лотком с яйцами, при этом автомобильные лампы и обычные 220-вольтовые располагают вперемешку.

Если навыков радиолюбителя у вас нет, можно собрать примитивный терморегулятор, используя термостат от какого-нибудь ненужного или поломанного электроприбора. Лучшим «донором» является старый утюг. Извлеченный из него термостат промывают, заполняют эфиром и герметично запаивают. Эфир активно испаряется, поэтому работу с ним затягивать не следует.

Это вещество выбрано потому, что оно хорошо реагирует на колебания температуры изменением объема. Остается припаять к термостату регулируемый винт или пластину, которые при определенной температуре будут замыкать контакты в цепи нагревателя.

Обогреватель в качестве вспомогательного прибора для отопления часто используют и в частных домах, и в квартирах. Масляные радиаторы отопления электрические очень популярны среди потребителей благодаря их эффективности.

Нужно ли покупать ИБП для котла отопления? Попробуем разобраться далее.

Настройка терморегулятора

Как уже говорилось, терморегулятор на базе датчика LM335 в настройке не нуждается. Достаточно знать напряжение, подаваемое потенциометром на прямой вход компаратора.

Измерить его можно при помощи вольтметра. Необходимое значение напряжения определяется по приведенной выше формуле.

Если нужно, к примеру, чтобы прибор срабатывал при температуре в 20 градусов, оно должно составлять 2,93 В.

Если в качестве термодатчика применяется какой-либо иной элемент, эталонное напряжение придется проверять опытным путем. Для этого необходимо воспользоваться цифровым термометром, например, ТМ-902С. Для точности настройки датчики термометра и терморегулятора можно соединить посредством изоленты, после чего их помещают в среду с различной температурой.

Терморегулятор из подручных материалов

Ручку потенциометра нужно плавно вращать, пока терморегулятор не сработает. В этот момент следует посмотреть на шкалу цифрового термометра и отображаемую на ней температуру нанести на шкалу терморегулятора. Можно определить крайние точки, например, для температуры в 8 и 40 градусов, а промежуточные значения отметить, разделив диапазон на равные части.

Если цифрового термометра под рукой не оказалось, крайние точки можно определять по воде с плавающим в ней льдом (0 градусов) или по кипящей воде (100 градусов).

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации