Андрей Смирнов
Время чтения: ~19 мин.
Просмотров: 0

Техническое предназначение терморегулирующего вентиля кондиционера

Замена ТРВ

Если холодильное оборудование функционирует с перебоями, то сначала необходимо выяснить причину возможной поломки.

Например, когда отсутствует поступление горячего или холодного воздуха с кондиционера, то одной из причин его плохой работы может быть засорение воздушного фильтра.

Для возобновления нормальной работы, следует почистить фильтр, а также другие аксессуары и не допускать, насколько это возможно, попадание в них грязи и пыли.

Если трв например не может выровнять давление в контурах, то лучше всего провести его замену. Кстати, такой технологический процесс устранения неисправности как замена трв – простая процедура, которую можно осуществить самому.

Кроме этого, предлагаем перечень наиболее распространенных поломок холодильного оборудования, когда необходима замена устройства:

  • слишком мала производительность;
  • наличие пульсации давления, что выражается большой производительностью;
  • на всасывании образуется очень высокое давление;
  • перетекает жидкий хладагент из термобаллона или наличие его утечки;
  • компрессор постоянно переполняется жидкостью, что вызвано слишком большой пропускной способностью вентиля;
  • агрегат постоянно закрыт;
  • клапан не реагирует на любые способа воздействия;
  • наблюдение постоянных колебаний температурных показателей, давления в системе.

Как выбрать

Термостат подбирается в соответствии с рабочими характеристиками отопительной системы. Устройство должно:

  1. Выдерживать давление в диапазоне 16–40 бар и температуру до 200 °С.
  2. Быть изготовлено из коррозиестойких материалов, устойчивых к механическим воздействиям.
  3. Совпадать по диаметру с размером трубопровода.
  4. Совпадать по параметрам резьбы на трубе.

Популярные производители

Наиболее надежными и долговечными считаются термостаты, изготовленные следующими компаниями:

Danfoss (Дания). Приборы этого производителя, несмотря на достаточно низкую цену, обладают усовершенствованной конструкцией. Они оснащены стабилизатором потока, поэтому работают бесшумно. Не засоряются при работе с теплоносителем любой загрязненности, так как ход их штока больше в 1,5 раза, а окно настройки производительности имеет увеличенное сечение.

Oventrop (Германия). Многообразие типоразмеров термостатической арматуры компании Oventrop позволяет подобрать идеальную модель к любой инженерной системе. Отличные регулирующие качества, высокая надежность продукции сочетаются с эстетичным внешним видом.

Luxor (Италия). Термостаты Luxor подходят для систем отопления, где теплоноситель — горячая вода. Они оснащены термостатическим шпинделем, обеспечивающим предварительную настройку потока.

Функционирование при изменении нагрузки

В различных типах холодильных установок и установок для кондиционирования воздуха большой мощности, имеющих несколько компрессоров, имеется возможность снижать холодильную мощность при уменьшении нагрузки путем прогрессивного отключения работающих компрессоров и/или их отдельных цилиндров. К сожалению, производительность ТРВ не может быть так же легко изменена, поэтому при остановке компрессоров или их частичной дезактивации производительность клапана оказывается избыточной. В разумных пределах регулировка клапана возможна, и он по-прежнему в состоянии обеспечить необходимые параметры потока холодильного агента. Понятно также, что при функционировании с малой нагрузкой тщательной регулировки клапана не требуется, поскольку не весь испаритель оказывается задействованным, и опасности возврата жидкости не возникает. Предусмотреть заранее режим функционирования ТРВ, когда система работает на пониженном режиме, трудно ввиду множества факторов, влияющих на его работу

Ниже приводится перечень мер предосторожности, при соблюдении которых обеспечивается нормальное функционирования клапана даже при снижении нагрузки до 65%

ТРВ следует подбирать таким образом, чтобы при максимальных нагрузках он оставался как можно более открытым. В частности, когда запланированный режим предусматривает в основном работу с пониженной нагрузкой, рекомендуется выбирать клапан с производительностью на 10—15% меньше максимальных рабочих параметров установки.

Схема охлаждения жидкости с использованием промежуточного хладоносителя и вторичного теплообменного аппарата.

Применяется в случае, если перепад температур ∆Тж = (ТНж – ТКж ) > 7ºС или для охлаждения пищевых продуктов, т.е. охлаждение во вторичном разборном теплообменнике.

Gх= Gж · n

где:

Gх – массовый расход промежуточного хладоносителя кг/ч

Gж – массовый расход охлаждаемой жидкости кг/ч

n– кратность циркуляции промежуточного хладоносителя

n =

где: CРж – теплоёмкость охлаждаемой жидкости, кДж/(кг´К)

CРх – теплоёмкость промежуточного хладоносителя, кДж/(кг´К)

∆Тх = (ТНх – ТКх ) – температурный перепад промежуточного хладоносителя в испарителе

∆Тх = 4…5ºС при температуре хладоносителя ТКх > 0 оС

∆Тх = 3…4ºС при температуре хладоносителя ТКх < 0 оС

Температуре хладоносителя принимается ТКх = ТКж – (3…6 оС)

Разновидности 3-ходовых клапанов

Все термостатические трехходовые клапаны для отопления делятся на 3 вида по устройству и принципу работы:

  • смесительные;
  • разделительные;
  • переключающие.

О назначении каждой из 3 разновидностей можно судить по названию. Первый тип клапана смешивает два потока теплоносителя с различной температурой, второй – разделяет, третий занимается переключением воды между 2 линиями. Распознать их внешне нетрудно, обычно принцип работы изображен на корпусе в виде рисунка. Вот как выглядит трехходовой смесительный клапан:


На заводском шильдике от фирмы Herz четко показано смешивание 2 потоков, значит, это смесительный вентиль

Похожее обозначение стоит на разделительном элементе. Что же касается переключающих кранов, то на их корпусе изображения может и не быть, зато есть значительные внешние отличия по форме.


Разделительный (фото слева) и переключающий (справа) 3-ходовой клапан

С помощью смешивания или разделения потоков добиваются оптимальной температуры теплоносителя, подаваемого в радиаторы системы отопления или контуры теплого пола. Переключение используется в газовых двухконтурных котлах, когда нагретую воду надо поочередно направлять в разные теплообменники.

Регулятор производительности типа KVC

Слишком низкое давление всасывания вызывает появление вакуума в контуре, что приводит к опасности проникновения влаги в установку при негерметичном компрессоре. В общем случае регуляторы KVC устанавливаются на байпасной линии между всасывающим и нагнетающим патрубками компрессора. Регулятор KVC открывается при понижении давления на выходе (на линии всасывания).

Вместо регулятора KVC можно использовать регулятор производительности СРСЕ. Он устанавливается, если требуется более высокая точность регулирования при низких давлениях всасывания или при большом гидравлическом сопротивлении между выходом из регулятора и линией всасывания.

Регулятор KVC можно также установить на байпасной магистрали, выходящей из нагнетающего трубопровода, так чтобы выход регулятора подсоединялся к контуру между ТРВ и испарителем. Этот способ применяется в охладителях жидкости с несколькими параллельно соединенными компрессорами, но без жидкостного распределителя.

Конструкция и принцип работы

В холодильных установках и кондиционерах используется замкнутый контур, по которому циркулирует хладагент, меняя свое агрегатное состояние в испарителе. В системах отопления нагрев осуществляется при перекачке горячей жидкости к термоэлементам. Несмотря на разработку различных альтернативных способов охлаждения и нагрева, подобная схема работы является основной.

При небольшой мощности устройства не требуется постоянная подстройка под внешние изменения. В маломощных системах охлаждения роль регулятора выполняет дроссель из капиллярной трубки. Его работа не зависит от производительности испарителей и не способен менять уровень хладагента в контуре.

В отопительных контурах устанавливаются ручные регуляторы. В них изменение потока горячей жидкости осуществляется поворотом рукоятки, опускающей или поднимающей ограничительный шток.

Устройство ручного вентиля отопления

В системах, где требуется постоянная подстройка под изменяющиеся внешние условия, регулировка мощности охлаждения или нагрева осуществляется изменением величины потока рабочей среды.

Основным регулятором силы потока является ТРВ, что означает терморегулирующий вентиль. Это устройство прямого действия. Для его работы не требуется поступление внешней энергии. Вентиль реагирует на перегрев паров, выходящих из испарителя. А он, в свою очередь, зависит от нагрузки на охладительную систему.

Дополнительным преимуществом применения терморегулирующих вентилей является некритичность системы к точному количеству заполняющего хладагента.

Внутреннее устройство регулятора показано на рисунке.

Классический терморегулирующий вентиль для систем охлаждения

Основными элементами ТРВ являются:

  • мембрана или диафрагма, управляющая движением запорного штока;
  • капиллярная трубка с термобаллоном, передающая устройству изменения температуры паров на выходе из испарителя,
  • регулирующая пружина для настройки уровня установки,
  • входной и выходной штуцера.

Совокупность диафрагмы, термобаллона и капиллярной трубки называют термоэлементом. Именно он воспринимает окружающую температуру и осуществляет регулирование подачи хладагента.

Принцип работы вентиля заключается в движении мембраны под действием трех сил:

  • давление среды из термобаллона,
  • уравнивающее давление испарителя,
  • воздействие пружинного механизма.

После достижения равновесия между этими тремя силовыми составляющими диафрагма устанавливает требуемую величину потока хладагента.

Давление термобаллона = уравнивающее давление + давление пружины на мембрану.

При изменении температуры и возрастании тепловой нагрузки в испарителе увеличивается нагрев термобаллона и давление заполняющей его жидкости. Через капиллярную трубку оно передается диафрагме, в результате чего происходит открывание вентиля и увеличение подачи хладагента в испаритель.

По схожему принципу устроен и термостатический клапан радиатора отопления.

Терморегулятор для отопительных систем

В нем роль термобаллона выполняет чувствительный элемент (поплавок), расположенной в полости, заполненной жидкостью или газом. При изменении температуры происходит уменьшение или увеличение объема среды. В результате поплавок меняет свое положение, сдвигая шток, который изменяет проходное сечение клапана.

Наиболее чувствительными считаются термоэлементы, заполненные газом. Они реагируют на температурные изменения быстрее, чем жидкостные. Но и стоят они дороже.

Калибровка перегрева

Калибровка величины перегрева должна обеспечивать максимально большое допустимое при максимальной нагрузке значение перегрева.

В установке, где частичное снижении показателя нагрузки превышает 65% ее мощности, должны применяться другие меры, перечисленные ниже.

Два или более испарителей с одинаковыми параметрами

На рисунке 14.11 показаны два независимых испарителя, каждый из которых питается через собственный ТРВ с распределителем. На каждый испаритель приходится половина общей нагрузки.

Рисунок 14.11 Независимое питание двух параллельных испарителей равной мощности, работа каждого из которых регулируется собственным ТРВ и распределителем: следует обратить внимание, что первый участок линии всасывания находится под некоторым уклоном в сторону сифона, что делается для предотвращения отстоя холодильного агента и масла, искажающих показания датчика клапанов расширения.

Соленоидные клапаны соединены с устройством для понижения производительности компрессора таким образом, что один из них закрывается, при сокращении нагрузки на компрессор на 50%, отсекая один из терморегулирующих вентилей. Остающийся ТРВ обеспечивает поддержание производительности на требуемом уровне.

Такая же простая система применима к различным испарителям при различных уровнях частичного понижения производительности компрессора. Различные типы компрессоров могут подсоединяться параллельно или последовательно; в этом случае необходимо учитывать, что компрессоры, находящиеся первыми, будут испытывать более высокую нагрузку, чем последующие, поэтому производительность различных клапанов и распределителей должна быть отрегулирована с учетом этого.

Единичный испаритель

На рисунке 14.12 показана схема установки двух терморегулирующих вентилей и двух распределителей на одном испарителе.

Рисунок 14.12. Одинарный испаритель с двумя независимыми контурами, регулируемыми двумя соленоидными клапанами, ТРВ и распределителями. При снижении нагрузки охлаждения один из соленоидных клапанов закрывается, позволяя частично снизить вырабатываемую холодильную мощность.

Каждый контур испарителя имеет подвод двух трубок распределения, каждая из которых, в свою очередь, проходит через свой распределитель. Соленоидные клапаны управляются устройством регулировки частичной загрузки компрессора, как это было описано ранее.

Если ТРВ, соленоидный клапан и распределитель контура А выбираются таким образом, чтобы покрывать 67% общей производительности, а 33% общей максимальной нагрузки будет приходиться на контур В, при переключении соленоидных клапанов будут обеспечиваться рабочие параметры, приведенные в таблице 14.1.

Таблица 14.1. Последовательность переключения соленоидных клапанов при изменении тепловой нагрузки.

Тепловая нагрузка (%) Клапан А Клапан В Использование установленных ТРВ (%)
100
83
Открыт Открыт 100
83
67
50
Закрыт 100
75
33
16
Закрыт Открыт 100
50

Применение ТРВ

Вентиль для терморегуляции в отопительных системах и в системах кондиционирования создает баланс температуры в помещении. Охлаждение и нагревание воздуха — это всегда теплообмен между внешней средой и теплоносителем или охлаждающим агентом. Чтобы обмен был сбалансированным, вентиль автоматически регулирует поток нагретого или холодного воздуха.

Как работает ТРВ для отопления

Воздух в любом помещении может нагреваться не только за счет отопительной системы, но и от других источников тепла, не связанных с отоплением, например, от солнечных лучей из оконных проемов.

Устройство позволяет контролировать уровень нагревания воздуха, сохраняя комфортную температуру, и даже способен отсоединять отдельные батареи от тепловой магистрали.

Функция ТРВ в кондиционерах

Чтобы разобраться, как работает устройство, необходимо определиться в понятии «система кондиционирования».

Как и всякая система, она состоит из взаимосвязанных элементов, которые обеспечивают процесс охлаждения температуры воздуха в помещении:

  • Компрессор, который обеспечивает циркуляцию охлаждающего элемента. Из испарителя хладагент всасывает пары охлажденного воздуха под низким давлением и повышает их температуру, сжимая и повышая давление.
  • Конденсатор, где эти пары преобразуются в жидкость за счет отвода тепла в воду или атмосферу.
  • Устройство расширительное. Жидкость под высоким давлением переходит в двухфазное состояние (жидкость с низким давлением и пар) при попадании в расширитель.
  • Испаритель, элемент системы, где смесь снова превращается в пар.
  • Соединительный трубопровод, через который происходит охлаждение и парообразование в результате отвода тепла.

В бытовых условиях часто роль регулятора выполняет расширительная капиллярная трубка (дроссель), работающая за счет гидравлического сопротивления. Этот расширитель не требует настройки и вполне справляется с охлаждением хладагента в системах небольшой мощности: бытовых холодильниках, кондиционерах, морозильных камерах и прилавках. В дросселях уровень фреона (охлаждающего газа) остается неизменным, независимо от того, какова производительность системы, поскольку трубка не может пропустить больше хладона, не позволяет ее внутренний диаметр, поэтому их использования ограничивается приборами, где уровень мощности рассчитан специально и никак не меняется при изменении внешних условий.

Для контроля в момент появления меняющихся условий отвечает терморегулирующий вентиль (ТРВ), который регулирует количество хладагента.

Устройство и действие ТРВ

Через капиллярную трубку из термобаллона передается давление на диафрагму, которая в свою очередь запускает в действие запорный элемент, т.е закрывает или открывает клапан, пропуская хладагент в расширитель.

Пружина для регулирования уровня перегрева находится под запирающим элементом. Сила давления этой пружины изменяется за счет клапанов с внешним типом регулирования.

Давление в термобаллоне воздействует на диафрагму, вынуждая клапан открыться, а давление на пружину и уравнивающее давление, действуют в обратном направлении, заставляя клапан закрыться.

Если работа клапана проходит в нормальном режиме, действует следующая формула:

P1 = P2 + P3

  • где P1 — давление в термобаллоне,
  • P2 — уравнивающее давление в испарителе,
  • P3 — давление на пружинный механизм.

В идеале, температура в термобаллоне должна находится в прямом соответствии с температурой хладагента: при увеличении перегрева на выходе (т.е когда возрастает разница между температурой кипения и температурой хладагента), количество охладителя увеличивается, если перегрев снижается, его объем уменьшается. Таким образом, прибор регулирует объем хладагента в испарителе.

Типы уравнивателя

Изменение давления зависит от того, как происходит работа выравнивающего устройства. Существует два типа уравнителя:

  1. При ТРВ с внутренним типом устройства выравнивания давление происходит под диафрагму через зазоры или специальный проток на входе в испаритель. Используется в приборах с одним заходом, при допустимых перепадах давления, соответствующих изменению температуры на 20 F.
  2. Наружное выравнивание достигается благодаря тому, что подача давления происходит через трубку под диафрагму, полость под которой закрывается клапаном с уплотнителем. Может применяться в любых хладообразующих системах.

Терморегулирующие вентили (ТРВ) типа «Грибок»

# АлькорТип уплотненияТип уравниванияВходное отверстиеВыходное отверстиеВнешний уравнивательНаличие
EV-12115O-RingВнешнее«3/8″»»«1/2″»»«1/4″»»есть
EV-10920FlareВнешнее«3/8″»»«1/2″»»«1/4″»»есть
EV-10711O-RingВнешнее«3/8″»»«1/2″»»«1/4″»»есть
EV-10710O-RingВнутреннее«3/8″»»«1/2″»»нетесть
EV-10708FlareВнутреннее«3/8″»»«1/2″»»нетесть
EV-10712O-RingВнешнее«9/16″»x18 (14mm)»«1/2″»»«1/4″»»есть
EV-10713O-RingВнешнее«9/16″»x18 (14mm)»«1/2″»»«1/4″»»есть
EV-12101O-RingВнутреннее«9/16″»x18 (14mm)»«1/2″»»нетесть
EV-10709O-RingВнутреннее«9/16″»x18 (14mm)»«1/2″»»нетесть
EV-12110O-RingВнешнее«9/16″»x18 (14mm)»20 mm12×1.25 mmесть
EV-12111O-RingВнешнее«9/16″»x18 (14mm)»20 mm12×1.25 mmесть
EV-31031O-RingВнутреннее16 mm20 mmнетесть
EV-10704O-RingВнешнее16 mm20 mm12×1.25 mmесть
EV-12113O-RingВнешнее16 mm20 mm12×1.25 mmесть
EV-12112O-RingВнешнее16 mm22 mm12×1.25 mmесть
EV-12106O-RingВнутреннее16 mm22 mmнетесть
EV-12105O-RingВнешнее16 mm«1/2″»»12×1.25 mmесть

Частые ошибки и проблемы при установке

Наиболее распространенная ошибка — монтаж терморегулирующего клапана без использования отсечного крана. Дело в том, что устройство не предназначено для полного перекрывания потока. Кроме этого, ТРВ придется периодически чистить, а для этого необходимо отключать подачу теплоносителя. Сделать это можно только с помощью крана.

Вторая ошибка — монтировать терморегулирующий вентиль так, что он оказывается на пересечении теплых воздушных потоков от трубы отопления либо радиатора. При таком способе установки терморегулятор перегревается, то есть получает неверные данные о температурном режиме в комнате, и понижает подачу. Исключение составляют устройства с выносным датчиком.

Воздействие на систему испаритель/компрессор

С учетом того, что давление кипения имеет склонность к снижению, а температура воздуха на входе в испаритель увеличивается, то полный температурный напор??полн становится слишком высоким.

При уменьшении давления кипения температура снижается согласно соотношению между температурой и давлением для данного хладагента. Вместе с этим увеличивается и температура термобаллона (точка 2), в результате чего перегрев становится высоким.

Если говорить о кондиционере, то при его стабильной работе температура кипения всегда выше 0С. Но с учетом недостаточной производительности ТРВ, давление кипения станет низким и температура опуститься до отрицательных значений. В этом случае трубопровод на выходе их ТРВ покроется инеем (точка 6).

Сильфонные терморегулирующие вентили

Сильфонные регулирующие вентили бывают прямого и непрямого действия. Датская фирма «Данфосс» выпускает терморегулирующие вентили прямого действия (рис. 5).

Жидкий хладагент поступает из ресивера по жидкостной линии через фильтр (2) на входе в отверстие (10), соединяющее стороны высокого и низкого давления. Игла (12) входит в отверстие. Положение ее зависит от величины силы, действующей на сильфон. Эта сила определяется давлением в камере (8), которая расположена под крышкой (5), а также давлением внутри сильфона (9), равным давлению на входе в испаритель. Полость камеры соединена капиллярной трубкой с термобаллоном (3), прикрепленным к выходному штуцеру испарителя. Кроме того, положение иглы определяется усилием пружины (15). Движение сильфона передается игле через толкатель (7). Сжатие пружины регулируется винтом (17), уплотненным прокладкой и прикрытым колпачком (18).

Рис. 5 – Сильфонный терморегулирующий вентиль прямого действия: 1 – жидкостная линия; 2 – фильтр; 3 – термобаллон; 4 – капиллярная трубка; 5 – крышка; 6 – уравнительный проход; 7 – толкатель; 8 – камера; 9 – сильфон; 10 – отверстие в седле иглы; 11 – камера, соединяющаяся с ресивером; 12 – игла; 13 – штуцер; 14 – корпус; 15 – пружина; 16 – прокладка; 17 – регулировочный винт; 18 – колпачок

В корпусе (14) имеется уравнительный проход (сверление) (6), соединяющий внутреннюю камеру сильфона (9) с камерой (11), в которую подается хладагент из ресивера через открытое отверстие (10) и далее через штуцер (13) направляется в испаритель.

До пуска установки испаритель, выходной штуцер и термобаллон имеют одинаковые температуры и давления, если термочувствительная система заряжена тем же хладагентом, что и вся установка. Поскольку пружина (15) несколько сжата, вентиль выключенной установки остается закрытым. Если термобаллон и сильфон заряжены другой средой, натяжение пружины должно компенсировать разницу соотношений температур и давлений указанной среды и хладагента.

После пуска компрессора вентиль остается закрытым, пока не возрастет перепад давлений между термочувствительной системой вентиля и испарителем. Когда перегрев пара достигнет установленного значения, вентиль откроется, и жидкий хладагент начнет поступать в испаритель.

Натяжение пружины производится обычно на заводе-изготовителе, чтобы вентиль открывался при перегреве 7° С. Регулирование производят только при чрезмерном или недостаточном перегреве паров.

При недостаточном перегреве паров всасывающий трубопровод обильно покрывается инеем до запорного вентиля, и температура кипения получается выше желаемой. Для устранения этого отвинчивают колпачок (18) и поворачивают регулирующий шпиндель (17) в направлении часовой стрелки. Каждый оборот дает изменение перегрева на 2° С.

Если испаритель до всасывающего трубопровода не покрыт полностью инеем и температура кипения ниже желаемой, значит перегрев слишком сильный и прибор также надо отрегулировать.

После каждого регулирования колпачок (18) туго затягивают, чтобы исключить утечку хладагента и проникновение влаги в установку.

Фирма «Данфосс» выпускает терморегулирующий вентиль непрямого действия (рис. 6). Этот прибор предназначен для установок с холодопроизводительностью до 700 тыс. Вт. В нем имеется вспомогательный клапан (14), который управляет основным регулирующим клапаном (8), Оба клапана помещены внутри стакана (13).

Основной клапан перемещается под давлением регулируемой среды на сильфон (2), который соединен с толкателем (4), уплотненным сальником (3). Сильфон помещен под крышкой (1).

Рис. 6 – Схема сильфонного терморегулирующего вентиля непрямого действия

Седло (7) основного клапана размещено в перегородке корпуса. Подводящий трубопровод крепится к корпусу через фланец (15), отводящий – через фланец (5) с дроссельной шайбой (6).

Настройка вентиля осуществляется изменением поджатия пружины (9) с помощью регулировочного винта (11), который уплотнен в корпусе сальником (10) и прикрыт колпачком (12).

Термочувствительная система с баллоном (16) наполнена адсорбентом (активированный древесный уголь, углекислый газ). Изменяя количество вводимого в систему углекислого газа, можно изменять характеристику терморегулирующего вентиля, перемещая ее в область больших или меньших перегревов. Температура головки ТРВ может быть выше или ниже температуры термобаллона, который бывает цилиндрическим с продольным желобком или лепестковый.

Структура и принцип работы системы охлаждения

Чтобы понять функции терморегулирующего вентиля, необходимо иметь хотя бы общие представления о работе холодильной системы. Холодильная система может определяться как замкнутый контур, процесс поглощения и передачи тепла в котором производится хладагентом в парокомпрессионном цикле. В таком простейшем виде холодильная система включает пять составляющих:

  • конденсатор;
  • компрессор;
  • испаритель;
  • расширительное устройство;
  • соединительный трубопровод.

Схема конструкции терморегулирующего вентиля

Сердцем холодильной системы является компрессор, так как он провоцирует циркуляцию хладагента. Его роль заключается во всасывании из испарителя паров низкой температуры (и давления) и сжатие их до высокой температуры (и давления). После этого пары высокой температуры переходят в конденсаторе в жидкую фазу. Конденсатор производит эту работу с помощью отвода в атмосферу тепла паров высокой температуры или, если конденсатор водяной, через отвод к воде тепла. Оставшаяся при высокой температуре жидкость поступает в расширительные устройства и превращается в двухфазную смесь (пар и жидкость) низкой температуры. В испарителе эта смесь переходит к первоначальному состоянию путем отвода тепла от среды, которая охлаждается.

Очень важным является правильный выбор ТРВ, так как он является регулятором степени заполнения испарителя. Неправильно подобранные или используемые расширительные устройства будут усложнять управление и являться причиной низкой производительности всей системы. К примеру, расширительное устройство, недостаточное по производительности, станет причиной расчетной выработки всей системы. Слишком большое расширительное устройство может пропускать слишком много жидкости в испаритель, что повлечет за собой попадание на всасывание компрессора капель жидкости. Если в скором времени не исправить ошибку, то очень вероятна поломка компрессора. Отсюда вывод, что расширительные устройства необходимо правильно подбирать и монтировать.

Электронные ТРВ

Новое поколение терморегулирующих вентилей представляет собой электронные ТРВ.

Главное его преимущество — отсутствие мембраны и связанных с ней проблем. Регулирование проходного сечения осуществляется перемещением иглы конической формы под управлением шагового электропривода. При этом слово «шаговый» не должно вызывать испуг, будто плавное регулирование превратилось в двух-трех-позиционное. На самом деле речь идет, как правило, о 250-1500 шагах привода, а это практически гладкая кривая!

Управление приводом берет на себя контроллер кондиционера, снабженный этой функцией. В результате на основе измерений температуры и давления, поступающих в контроллер от соответствующих датчиков, генерируется сигнал, подаваемый на электропривод ТРВ. На примере электронных ТРВ итальянского производителя Carel данная схема выглядит следующим образом:

Благодаря разработанным алгоритмам точного контроля параметров работы кондиционера, вычисляется, как заявляется, идеальная позиция подвижного элемента. Этим достигается снижение величины перегрева хладагента в испарителе. Если в системе с механическим ТРВ перегрев составлял порядка 10°С, достигая 15°С, то в системе с электронным ТРВ перегрев выдерживается на уровне 5°С. Указывается, что столь точный контроль за работой ТРВ должен привести к годовому снижению электропотребления кондиционера на 15-20%. В реальной жизни эти цифры трудно проверить, но факт энергосбережения бесспорен:

Снижение величины перегрева → снижение температуры на входе в компрессор → снижение температуры на выходе из компрессора → в меньшей степени, но снижение температуры конденсации → снижение потребляемой мощности и повышение холодопроизводительности одновременно, т.е. энергоэффективность (отношение холодильной мощности к затраченной) увеличится одновременно за счет роста числителя и уменьшения знаменателя. Из каталога того же Carel данный эффект иллюстрируется следующей картинкой:

Очевидным плюсом является и программируемость контроллера, а также контроль работы ТРВ по любому сетевому протоколу, а также с дисплея кондиционера.

Однако следует помнить, что проведенная «электронизация» терморегулирующих вентилей поставила их в стандартные для любого электронного оборудования рамки: электроника не любит низких температур и не застрахована от сбоев програмного обеспечения.

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации