Андрей Смирнов
Время чтения: ~17 мин.
Просмотров: 0

Теплопроводность

Основные понятия

  • Проводимость — это передача тепла через вещество при непосредственном контакте атомов или молекул.
  • Конвекция — это передача тепла за счет циркуляции газа (например, воздуха) или жидкости (например, воды).
  • Излучение — это разница между поглощенным и отраженным количеством тепла. Эта способность сильно зависит от цвета, черные объекты поглощают больше тепла, чем светлые.
  • Испарение — это процесс, при котором атомы или молекулы в жидком состоянии получают достаточно энергии, чтобы стать газом или паром.
  • Парниковые газы — это газы, которые задерживают тепло солнца в атмосфере Земли, производя парниковый эффект. Выделяют две основные категории — это водяной пар и углекислый газ.
  • Возобновляемые источники энергии — это безграничные ресурсы, которые быстро и естественно пополняются. Сюда можно отнести следующие примеры теплопередачи в природе и технике: ветры и энергию солнца.
  • Теплопроводность — это скорость, с которой материал передает тепловую энергию через себя.
  • Тепловое равновесие — это состояние, в котором все части системы находятся в одинаковом температурном режиме.

Коэффициент теплопроводности металлов и его зависимость от параметров состояния вещества

Коэффициент теплопроводности — теплофизическая характеристика вещества, характеризует способность вещества проводить теплоту.

Коэффициент теплопроводности — количество теплоты, проходящее в единицу времени через единичную площадку, перпендикулярно grad t.

Для различных веществ коэффициент теплопроводности различен и зависит от структуры, плотности, влажности, давления и температуры. Эти обстоятельства должны учитываться при использовании справочных таблиц.

Наибольшее значение имеет коэффициент теплопроводности металлов, для которых . Наиболее теплопроводным металлом является серебро , затем идут чистая медь , золото , алюминий и т.д. Для большинства металлов рост температуры приводит к уменьшению коэффициента теплопроводности. Эта зависимость может быть приближенно аппроксимирована уравнением прямой линии

(3)

здесь л, л0 — соответственно коэффициенты теплопроводности при данной температуре t и при 00C, в — температурный коэффициент. Коэффициент теплопроводности металлов очень чувствителен к примесям.

Например, при появлении в меди даже следов мышьяка её коэффициент теплопроводности снижается с 395 до 142; для стали при 0,1 % углерода л = 52 , при 1,0 % — л = 40 , при 1,5 % углерода л=36 .

На коэффициент теплопроводности влияет и термическая обработка. Так, у закаленной углеродистой стали л на 10 — 25% ниже, чем у мягкой. По этим причинам коэффициенты теплопроводности торговых образцов металла при одинаковых температурах могут существенно различаться. Следует отметить, что для сплавов, в отличие от чистых металлов, характерно увеличение коэффициента теплопроводности с ростом температуры. К сожалению, установить какие — либо общие количественные закономерности, которым подчиняется коэффициент теплопроводности сплавов, пока не удалось.

Величина коэффициента теплопроводности строительных и теплоизоляционных материалов — диэлектриков во много раз меньше, чем у металлов и составляет 0,02 — 3,0 . Для подавляющего большинства из них (исключение составляет магнезитовый кирпич) с ростом температуры коэффициент теплопроводности возрастает. При этом можно пользоваться уравнением (3), имея ввиду, что для твердых тел — диэлектриков в>0.

Многие строительные и теплоизоляционные материалы имеют пористое строение (кирпич, бетон, асбест, шлак и др.). Для них и порошкообразных материалов коэффициент теплопроводности существенно зависит от объемной плотности. Это обусловлено тем, что с ростом пористости, большая часть объема заполняется воздухом, коэффициент теплопроводности которого очень низок. Вместе с тем, чем выше пористость, тем ниже объемная плотность материала. Таким образом, уменьшение объемной плотности материала, при прочих равных условиях, приводит к уменьшению л.

Например, для асбеста уменьшение объемной плотности с 800 кг/м, до 400 кг/м, приводит к уменьшению с 0,248 до 0,105 . Очень велико влияние влажности. Например, для сухого кирпича л = 0,35, для жидкости 0,6, а для влажного кирпича л=1,0 .

На эти явления надо обращать внимание при определении и технических расчетах теплопроводности. Коэффициент теплопроводности капельных жидкостей лежит в пределах 0,08 — 0,7

При этом, для подавляющего большинства жидкостей с повышением температуры коэффициент теплопроводности убывает. Исключение составляют вода и глицерин.

Коэффициент теплопроводности газов еще ниже  .

Коэффициент теплопроводности газов растет с повышением температуры. В пределах от 20 мм.рт.ст. до 2000 ат (бар), т.е. в области, которая наиболее часто встречается на практике, л от давления не зависит. Следует иметь в виду, что для смеси газов (дымовые газы, атмосфера термических печей и т.п.) расчетным путем определить коэффициент теплопроводности невозможно. Поэтому при отсутствии справочных данных достоверная величина л может быть найдена лишь опытным путем.

При значении л < 1 — вещество называют тепловым изолятором.

Для решения задач теплопроводности необходимо располагать сведениями о некоторых макроскопических свойствах (теплофизических параметрах) вещества: коэффициенте теплопроводности, плотности, удельной теплоемкости. 

Закон теплопроводности Фурье

В установившемся режиме плотность потока энергии, передающейся посредством теплопроводности, пропорциональна градиенту температуры:

q→=−ϰgrad(T),{\displaystyle {\vec {q}}=-\varkappa \,\mathrm {grad} (T),}

где q→{\displaystyle {\vec {q}}} — вектор плотности теплового потока — количество энергии, проходящей в единицу времени через единицу площади, перпендикулярной каждой оси, ϰ{\displaystyle \varkappa } — коэффициент теплопроводности (удельная теплопроводность), T{\displaystyle T} — температура. Минус в правой части показывает, что тепловой поток направлен противоположно вектору grad(T){\displaystyle \mathrm {grad} (T)} (то есть в сторону скорейшего убывания температуры). Это выражение известно как закон теплопроводности Фурье.

В интегральной форме это же выражение запишется так (если речь идёт о стационарном потоке тепла от одной грани параллелепипеда к другой):

P=−ϰSΔTl,{\displaystyle P=-\varkappa {\frac {S\Delta T}{l}},} [Вт/(м·К) · (м2·К)/м = Вт/(м·К) · (м·К) = Вт]

где P{\displaystyle P} — полная мощность тепловых потерь, S{\displaystyle S} — площадь сечения параллелепипеда, ΔT{\displaystyle \Delta T} — перепад температур граней, l{\displaystyle l} — длина параллелепипеда, то есть расстояние между гранями.

Связь с электропроводностью

Связь коэффициента теплопроводности ϰ{\displaystyle \varkappa } с удельной электрической проводимостью σ{\displaystyle \sigma } в металлах устанавливает закон Видемана — Франца:

ϰσ=π23(ke)2T,{\displaystyle {\frac {\varkappa }{\sigma }}={\frac {\pi ^{2}}{3}}\left({\frac {k}{e}}\right)^{2}T,}
где k{\displaystyle k} — постоянная Больцмана,
e{\displaystyle e} — заряд электрона,
T{\displaystyle T} — абсолютная температура.

Коэффициент теплопроводности газов

В газах коэффициент теплопроводности может быть найден по приближённой формуле

ϰ∼13ρcvλv¯,{\displaystyle \varkappa \sim {\frac {1}{3}}\rho c_{v}\lambda {\bar {v}},}

где ρ{\displaystyle \rho } — плотность газа, cv{\displaystyle c_{v}} — удельная теплоёмкость при постоянном объёме, λ{\displaystyle \lambda } — средняя длина свободного пробега молекул газа, v¯{\displaystyle {\bar {v}}} — средняя тепловая скорость. Эта же формула может быть записана как

ϰ=ik3π32d2RTμ,{\displaystyle \varkappa ={\frac {ik}{3\pi ^{3/2}d^{2}}}{\sqrt {\frac {RT}{\mu }}},}

где i{\displaystyle i} — сумма поступательных и вращательных степеней свободы молекул (для двухатомного газа i=5{\displaystyle i=5}, для одноатомного i=3{\displaystyle i=3}), k{\displaystyle k} — постоянная Больцмана, μ{\displaystyle \mu } — молярная масса, T{\displaystyle T} — абсолютная температура, d{\displaystyle d} — эффективный (газокинетический) диаметр молекул, R{\displaystyle R} — универсальная газовая постоянная. Из формулы видно, что наименьшей теплопроводностью обладают тяжелые одноатомные (инертные) газы, наибольшей — легкие многоатомные (что подтверждается практикой, максимальная теплопроводность из всех газов — у водорода, минимальная — у радона, из нерадиоактивных газов — у ксенона).

Теплопроводность в сильно разреженных газах

Приведённое выше выражение для коэффициента теплопроводности в газах не зависит от давления. Однако если газ сильно разрежен, то длина свободного пробега определяется не столкновениями молекул друг с другом, а их столкновениями со стенками сосуда. Состояние газа, при котором длина свободного пробега молекул ограничивается размерами сосуда называют высоким вакуумом. При высоком вакууме теплопроводность убывает пропорционально плотности вещества (то есть пропорциональна давлению в системе): ϰ∼13ρcvlv¯∝P{\displaystyle \varkappa \sim {\frac {1}{3}}\rho c_{v}l{\bar {v}}\propto P}, где l{\displaystyle l} — размер сосуда, P{\displaystyle P} — давление.

Таким образом коэффициент теплопроводности вакуума тем ближе к нулю, чем глубже вакуум. Это связано с низкой концентрацией в вакууме материальных частиц, способных переносить тепло. Тем не менее, энергия в вакууме передаётся с помощью излучения. Поэтому, например, для уменьшения теплопотерь стенки термоса делают двойными, серебрят (такая поверхность лучше отражает излучение), а воздух между ними откачивают.

Шаг 5: Правила монтажа

Стоит сказать, что все указанные выше показатели приведены для СУХИХ материалов. Если материл, намокнет, он потеряет свои свойства как минимум наполовину, а то и вовсе превратится в «тряпку». Поэтому нужно защищать теплоизоляцию. Пенопластом чаще всего утепляют под мокрый фасад, в котором утеплитель защищен слоем штукатурки. На минвату накладывается гидроизоляционная мембрана, чтобы не допустить попадание влаги.

Еще один момент, который заслуживает внимания — ветрозащита. Утеплители имеют разную пористость. Например, сравним плиты пенополистирола и минеральную вату. Если первый на вид выглядит цельным, на втором явно видны поры или волокна. Поэтому, если вы монтируете волокнистую теплоизоляцию, например, минвату или эковату на продуваемом ветром ограждении обязательно позаботьтесь о ветрозащите. В противном случае от хороших термических показателей утеплителя не будет пользы.

Особенности теплопередачи

Что такое теплопередача? В чем особенности данного явления? Его невозможно остановить полностью, можно только уменьшить скорость его протекания? Используется ли теплопередача в природе и технике? Именно теплообмен сопровождает и характеризует многие природные явления: эволюция планет и звезд, метеорологические процессы на поверхности нашей планеты. К примеру, совместно с обменом массой, процесс передачи тепла позволяет анализировать испарительное охлаждение, сушку, диффузию. Он осуществляется между двумя носителями тепловой энергии через твердую стенку, выступающую в роли границы раздела тел.

Теплопередача в природе и технике — это способ характеристики состояния отдельного тела, анализа свойств термодинамической системы.

Как рассчитать толщину стен

Для того чтобы зимой в доме было тепло, а летом прохладно, необходимо чтобы ограждающие конструкции (стены, пол, потолок/кровля) должны иметь определенное тепловое сопротивление. Для каждого региона эта величина своя. Зависит она от средних температур и влажности в конкретной области.

Термическое сопротивление ограждающихконструкций для регионов России

Для того чтобы счета за отопление не были слишком большими, подбирать строительные материалы и их толщину надо так, чтобы их суммарное тепловое сопротивление было не меньше указанного в таблице.

Расчет толщины стены, толщины утеплителя, отделочных слоев

Для современного строительства характерна ситуация, когда стена имеет несколько слоев. Кроме несущей конструкции есть утепление, отделочные материалы. Каждый из слоев имеет свою толщину. Как определить толщину утеплителя? Расчет несложен. Исходят из формулы:

Формула расчета теплового сопротивления

R — термическое сопротивление;

p — толщина слоя в метрах;

k — коэффициент теплопроводности.

Предварительно надо определиться с материалами, которые вы будете использовать при строительстве. Причем, надо знать точно, какого вида будет материал стен, утепление, отделка и т.д. Ведь каждый из них вносит свою лепту в теплоизоляцию, и теплопроводность строительных материалов учитывается в расчете.

Сначала считается термическое сопротивление конструкционного материала (из которого будет строится стена, перекрытие и т.д.), затем «по остаточному» принципу подбирается толщина выбранного утеплителя. Можно еще принять в расчет теплоизоляционных характеристики отделочных материалов, но обычно они идут «плюсом» к основным. Так закладывается определенный запас «на всякий случай». Этот запас позволяет экономить на отоплении, что впоследствии положительно сказывается на бюджете.

Пример расчета толщины утеплителя

Разберем на примере. Собираемся строить стену из кирпича — в полтора кирпича, утеплять будем минеральной ватой. По таблице тепловое сопротивление стен для региона должно быть не меньше 3,5. Расчет для этой ситуации приведен ниже.

  1. Для начала просчитаем тепловое сопротивление стены из кирпича. Полтора кирпича это 38 см или 0,38 метра, коэффициент теплопроводности кладки из кирпича 0,56. Считаем по приведенной выше формуле: 0,38/0,56 = 0,68. Такое тепловое сопротивление имеет стена в 1,5  кирпича.
  2. Эту величину отнимаем от общего теплового сопротивления для региона: 3,5-0,68 = 2,82. Эту величину необходимо «добрать» теплоизоляцией и отделочными материалами.

  3. Считаем толщину минеральной ваты. Ее коэффициент теплопроводности 0,045. Толщина слоя будет: 2,82*0,045 = 0,1269 м или 12,7 см. То есть, чтобы обеспечить требуемый уровень утепления, толщина слоя минеральной ваты должна быть не меньше 13 см.

Если бюджет ограничен, минеральной ваты можно взять 10 см, а недостающее покроется отделочными материалами. Они ведь будут изнутри и снаружи. Но, если хотите, чтобы счета за отопление были минимальными, лучше отделку пускать «плюсом» к расчетной величине. Это ваш запас на время самых низких температур, так как нормы теплового сопротивления для ограждающих конструкций считаются по средней температуре за несколько лет, а зимы бывают аномально холодными

Потому теплопроводность строительных материалов, используемых для отделки просто не принимают во внимание

Теплопроводность

Чаще всего теплопроводность наблюдается в твёрдых телах. Если под воздействием каких-либо факторов у одного и того же вещества появляются участки с разными температурами, то тепловая энергия из более нагретого участка перейдёт к холодному. Подобное явление в некоторых случаях можно наблюдать даже визуально. Например, если взять металлический стержень, скажем, иголку, и нагреть его на огне, то через какое-то время увидим, как тепловая энергия передаётся по иголке, образуя на определённом участке свечение. При этом в месте, где температура выше, свечение ярче и, наоборот, где t ниже, оно темнее. Теплопроводность может наблюдаться также между двумя телами (кружкой горячего чая и рукой)

Интенсивность передачи теплового потока зависит от многих факторов, соотношение которых выявил французский математик Фурье. К этим факторам относится в первую очередь градиент температуры (соотношение разности температур на концах стержня к расстоянию от одного конца к другому), площадь сечения тела, а также коэффициент теплопроводности (у всех веществ он разный, но самый высокий наблюдается у металлов). Самый значительный коэффициент теплопроводности наблюдается у меди и алюминия. Неудивительно что именно эти два металла чаще используются в изготовлении электропроводов. Следуя закону Фурье, величину теплового потока можно увеличить или уменьшить, изменив один из этих параметров.

Что такое проводимость?

Возможно, многие не раз замечали, что в одном и том же помещении ощущения от прикосновения с полом могут быть совершенно разные. Приятно и тепло ходить по ковру, но если зайти в ванную комнату босыми ногами, ощутимая прохлада сразу дает чувство бодрости. Только не в том случае, где есть подогрев полов.

Так почему же плиточная поверхность мерзнет? Это все из-за теплопроводности. Это один из трех типов передачи тепла. Всякий раз, когда два объекта различных температур находятся в контакте друг с другом, тепловая энергия будет проходить между ними. Примеры теплопередачи в этом случае можно привести следующие: держась за металлическую пластину, другой конец которой будет помещен над пламенем свечи, со временем можно почувствовать жжение и боль, а в момент прикосновения к железной ручке кастрюли с кипящей водой можно получить ожог.

Конвекция

Отвечая на вопрос о том, что такое теплопередача, рассмотрим процесс переноса тепла в жидкостях либо в газах путем самопроизвольного либо вынужденного перемешивания. В случае принудительной конвекции перемещение вещества вызвано воздействием внешних сил: лопастей вентилятора, насоса. Применяется подобный вариант в тех ситуациях, когда естественная конвекция не является эффективной.

Естественный процесс наблюдается в тех случаях, когда при неравномерном нагревании происходит нагревание нижних слоев вещества. Уменьшается их плотность, они поднимаются вверх. Верхние слои, напротив, охлаждаются, тяжелеют, опускаются вниз. Далее процесс неоднократно повторяется, а при перемешивании наблюдается самоорганизация в структуру вихрей, из конвекционных ячеек формируется правильная решетка.

Благодаря естественной конвекции образуются облака, выпадают атмосферные осадки, осуществляется движение тектонических плит. Именно путем конвекции на Солнце формируются гранулы.

Правильное использование теплопередачи гарантирует минимальную потерю тепла, максимальное потребление.

«Виды теплопередачи: теплопроводность, конвекция, излучение»

Теплопередача – это способ изменения внутренней энергии тела при передаче энергии от одной части тела к другой или от одного тела к другому без совершения работы. Существуют следующие виды теплопередачи: теплопроводность, конвекция и излучение.

Теплопроводность

Теплопроводность – это процесс передачи энергии от одного тел а к другому или от одной части тела к дpугой благодаря тепловому движению частиц

Важно, что при теплопроводности не происходит перемещения вещества, от одного тела к другом у или от одной части телa к другой передается энергия

Разные вещества обладают разной теплопроводностью. Если на дно пробирки, наполненной водой, положить кусочек льда и верхний её конец поместить над пламенем спиртовки, то через некоторое время вода в верхней части пробирки закипит, а лёд при этом не растает. Следовательно, вода, так же как и все жидкости, обладает плохой теплопроводностью.

Ещё более плохой теплопроводность ю обладают газы. Возьмём пробирку, в которой нет ничего, кроме воздуха, и расположим её над пламенем спиртовки. Палец, помещённый в пробирку, не почувствует тепла. Следовательно, воздух и другие газы обладает плохой теплопроводностью.

Хорошими проводниками теплоты являются металлы, самыми плохими — сильно разреженные газы. Это объясняется особенностями их строения. Молекулы газов находятся друг от друга на расстояниях, больших, чем молекулы твёрдых тел, и значительно реже сталкиваются. Поэтому и передача энергии от одних молекул к другим в газах происходит не столь интенсивно, как в твёрдых телах. Теплопроводность жидкости занимает промежуточное положение между теплопроводностью газов и твёрдых тел.

Конвекция

Как известно, газы и жидкости плохо проводят теплоту. В то же время от батарей парового отопления нагревается воздух. Это происходит благодаря такому виду теплопроводности, как конвекция.

Если вертушку, сделанную из бумаги, поместить над источником тепла, то вертушка начнёт вращаться. Это происходит потому, что нагретые менее плотные слои воздуха под действием выталкивающей силы поднимаются вверх, а более холодные движутся вниз и занимают их место, что и приводит к вращению вертушки.

Конвекция — вид теплопередачи, при котором энергия передаётся слоями жидкости или газа.  Конвекция связана с переносом вещества, поэтому она может осуществляться только в жидкостях и газах; в твёрдых телах конвекция не происходит.

Излучение

Третий вид теплопередачи — излучение. Если поднести руку к спирали электроплитки, включённой в сеть, к горящей электрической лампочке, к нагретому утюгу, к батарее отопления и т.п., то можно явно ощутить тепло.

Опыты также показывают, что чёрные тела хорошо поглощают и излучают энергию, а белые или блестящие плохо испускают и плохо поглощают её. Они хорошо энергию отражают. Поэтому понятно, почему летом носят светлую одежду, почему дома на юге предпочитают красить в белый цвет.

Путём излучения энергия передаётся от Солнца к Земле. Поскольку пространство между Солнцем и Землёй представляет собой вакуум (высота атмосферы Земли много меньше расстояния от неё до Солнца), то энергия не может передаваться ни путём конвекции, ни путём теплопроводности. Таким образом, для передачи энергии путём излучения не требуется наличия какой-либо среды, эта теплопередача может осуществляться и в вакууме.

Конспект урока «Виды теплопередачи: теплопроводность, конвекция, излучение».

Следующая тема: «Количество теплоты. Удельная теплоёмкость».

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. В твёрдых телах теплопередача может осуществляться путём

1) конвекции 2) излучения и конвекции 3) теплопроводности 4) конвекции и теплопроводности

2. Теплопередача путём конвекции может происходить

1) только в газах 2) только в жидкостях 3) только в газах и жидкостях 4) в газах, жидкостях и твёрдых телах

3. Каким способом можно осуществить теплопередачу между телами, разделёнными безвоздушным пространством?

1) только с помощью теплопроводности 2) только с помощью конвекции 3) только с помощью излучения 4) всеми тремя способами

4. Благодаря каким видам теплопередачи в ясный летний день нагревается вода в водоёмах?

1) только теплопроводность 2) только конвекция 3) излучение и теплопроводность 4) конвекция и теплопроводность

5. Какой вид теплопередачи не сопровождается переносом вещества?

1) только теплопроводность 2) только конвекция 3) только излучение 4) только теплопроводность и излучение

6. Какой(-ие) из видов теплопередачи сопровождается(-ются) переносом вещества?

1) только теплопроводность 2) конвекция и теплопроводность 3) излучение и теплопроводность 4) только конвекция

7. В таблице приведены значения коэффициента, который характеризует скорость процесса теплопроводности вещества, для некоторых строительных материалов.

В условиях холодной зимы наименьшего дополнительного утепления при равной толщине стен требует дом из

1) газобетона 2) железобетона 3) силикатного кирпича 4) дерева

8. Стоящие на столе металлическую и пластмассовую кружки одинаковой вместимости одновременно заполнили горячей водой одинаковой температуры. В какой кружке быстрее остынет вода?

1) в металлической 2) в пластмассовой 3) одновременно 4) скорость остывания воды зависит от её температуры

9. Открытый сосуд заполнен водой. На каком рисунке правильно изображено направление конвекционных потоков при приведённой схеме нагревания?

10. Воду равной массы нагрели до одинаковой температуры и налили в две кастрюли, которые закрыли крышками и поставили в холодное место. Кастрюли совершенно одинаковы, кроме цвета внешней поверхности: одна из них чёрная, другая блестящая. Что произойдёт с температурой воды в кастрюлях через некоторое время, пока вода не остыла окончательно?

1) Температура воды не изменится ни в той, ни в другой кастрюле. 2) Температура воды понизится и в той, и в другой кастрюле на одно и то же число градусов. 3) Температура воды в блестящей кастрюле станет ниже, чем в чёрной. 4) Температура воды в чёрной кастрюле станет ниже, чем в блестящей.

11. Учитель провёл следующий опыт. Раскалённая плитка (1) размещалась напротив полой цилиндрической закрытой коробки (2), соединённой резиновой трубкой с коленом U-образного манометра (3). Первоначально жидкость в коленах находилась на одном уровне. Через некоторое время уровни жидкости в манометре изменились (см. рисунок).

Выберите из предложенного перечня два утверждения, которые соответствуют результатам проведённых экспериментальных наблюдений. Укажите их номера.

1) Передача энергии от плитки к коробке осуществлялась преимущественно за счёт излучения. 2) Передача энергии от плитки к коробке осуществлялась преимущественно за счёт конвекции. 3) В процессе передачи энергии давление воздуха в коробке увеличивалось. 4) Поверхности чёрного матового цвета по сравнению со светлыми блестящими поверхностями лучше поглощают энергию. 5) Разность уровней жидкости в коленах манометра зависит от температуры плитки.

12. Из перечня приведённых ниже высказываний выберите два правильных и запишите их номера в таблицу.

1) Внутреннюю энергию тела можно изменить только в процессе теплопередачи. 2) Внутренняя энергия тела равна сумме кинетической энергии движения молекул тела и потенциальной энергии их взаимодействия. 3) В процессе теплопроводности осуществляется передача энергии от одних частей тела к другим. 4) Нагревание воздуха в комнате от батарей парового отопления происходит, главным образом, благодаря излучению. 5) Стекло обладает лучшей теплопроводностью, чем металл.

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации